RESUMEN
More than half of all brain metastases show infiltrating rather than displacing growth at the macro-metastasis/organ parenchyma interface (MMPI), a finding associated with shorter survival. The lymphoid enhancer-binding factor-1 (LEF1) is an epithelial-mesenchymal transition (EMT) transcription factor that is commonly overexpressed in brain-colonizing cancer cells. Here, we overexpressed LEF1 in an in vivo breast cancer brain colonization model. It shortened survival, albeit without engaging EMT at the MMPI. By differential proteome analysis, we identified a novel function of LEF1 as a regulator of the glutathione (GSH) system, the principal cellular redox buffer. LEF1 overexpression also conferred resistance against therapeutic GSH depletion during brain colonization and improved management of intracellular ROS. We conclude that besides EMT, LEF1 facilitates metastasis by improving the antioxidative capacity of epithelial breast cancer cells, in particular during colonization of the brain parenchyma.
Asunto(s)
Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Glutatión/metabolismo , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Encéfalo/patología , Línea Celular Tumoral , Movimiento Celular/fisiología , Transición Epitelial-Mesenquimal/fisiología , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Tejido Parenquimatoso/patologíaRESUMEN
Brain metastasis in breast cancer remains difficult to treat and its incidence is increasing. Therefore, the development of new therapies is of utmost clinical relevance. Recently, toll-like receptor (TLR) 4 was correlated with IL6 expression and poor prognosis in 1 215 breast cancer primaries. In contrast, we demonstrated that TLR4 stimulation reduces microglia-assisted breast cancer cell invasion. However, the expression, prognostic value, or therapeutic potential of TLR signaling in breast cancer brain metastasis have not been investigated. We thus tested the prognostic value of various TLRs in two brain-metastasis gene sets. Furthermore, we investigated different TLR agonists, as well as MyD88 and TRIF-deficient microenvironments in organotypic brain-slice ex vivo co-cultures and in vivo colonization experiments. These experiments underline the ambiguous roles of TLR4, its adapter MyD88, and the target nitric oxide (NO) during brain colonization. Moreover, analysis of the gene expression datasets of breast cancer brain metastasis patients revealed associations of TLR1 and IL6 with poor overall survival. Finally, our finding that a single LPS application at the onset of colonization shapes the later microglia/macrophage reaction at the macro-metastasis brain-parenchyma interface (MMPI) and reduces metastatic infiltration into the brain parenchyma may prove useful in immunotherapeutic considerations.
Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Humanos , Femenino , Receptor Toll-Like 4/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Interleucina-6/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/genética , Encéfalo/patología , Neoplasias Encefálicas/tratamiento farmacológico , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Microambiente TumoralRESUMEN
Human infantile-onset RNASET2-deficient cystic leukoencephalopathy is a Mendelian mimic of in utero cytomegalovirus brain infection with prenatally developing inflammatory brain lesions. We used an RNASET2-deficient zebrafish model to elucidate the underlying disease mechanisms. Mutant and wild-type zebrafish larvae brain development between 2 and 5â days post fertilization (dpf) was examined by confocal live imaging in fluorescent reporter lines of the major types of brain cells. In contrast to wild-type brains, RNASET2-deficient larvae displayed increased numbers of microglia with altered morphology, often containing inclusions of neurons. Furthermore, lysosomes within distinct populations of the myeloid cell lineage including microglia showed increased lysosomal staining. Neurons and oligodendrocyte precursor cells remained unaffected. This study provides a first look into the prenatal onset pathomechanisms of human RNASET2-deficient leukoencephalopathy, linking this inborn lysosomal disease to the innate immune system and other immune-related childhood encephalopathies like Aicardi-Goutières syndrome (AGS).
Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Leucoencefalopatías/diagnóstico , Leucoencefalopatías/genética , Leucoencefalopatías/metabolismo , Microglía/metabolismo , Fenotipo , Ribonucleasas/deficiencia , Proteínas Supresoras de Tumor/deficiencia , Animales , Apoptosis , Susceptibilidad a Enfermedades , Estudios de Asociación Genética/métodos , Humanos , Larva , Neuronas/metabolismo , Organogénesis/genética , Rombencéfalo/anomalías , Rombencéfalo/embriología , Rombencéfalo/metabolismo , Pez CebraRESUMEN
The mononuclear phagocytic system is categorized in three major groups: monocyte-derived cells (MCs), dendritic cells and resident macrophages. During breast cancer progression the colony stimulating factor 1 (CSF-1) can reprogram MCs into tumor-promoting macrophages in the primary tumor. However, the effect of CSF-1 during colonization of the brain parenchyma is largely unknown. Thus, we analyzed the outcome of anti-CSF-1 treatment on the resident macrophage population of the brain, the microglia, in comparison to MCs, alone and in different in vitro co-culture models. Our results underline the addiction of MCs to CSF-1 while surprisingly, microglia were not affected. Furthermore, in contrast to the brain, the bone marrow did not express the alternative ligand, IL-34. Yet treatment with IL-34 and co-culture with carcinoma cells partially rescued the anti-CSF-1 effects on MCs. Further, MC-induced invasion was significantly reduced by anti-CSF-1 treatment while microglia-induced invasion was reduced to a lower extend. Moreover, analysis of lung and breast cancer brain metastasis revealed significant differences of CSF-1 and CSF-1R expression. Taken together, our findings demonstrate not only differences of anti-CSF-1 treatment on MCs and microglia but also in the CSF-1 receptor and ligand expression in brain and bone marrow as well as in brain metastasis.