Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Kidney Int ; 101(5): 845-853, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35276204

RESUMEN

Acute kidney injury impacts âˆ¼13.3 million individuals and causes âˆ¼1.7 million deaths per year globally. Numerous injury pathways contribute to acute kidney injury, including cell cycle arrest, senescence, inflammation, mitochondrial dysfunction, and endothelial injury and dysfunction, and can lead to chronic inflammation and fibrosis. However, factors enabling productive repair versus nonproductive, persistent injury states remain less understood. The (Re)Building a Kidney (RBK) consortium is a National Institute of Diabetes and Digestive and Kidney Diseases consortium focused on both endogenous kidney repair mechanisms and the generation of new kidney tissue. This short review provides an update on RBK studies of endogenous nephron repair, addressing the following questions: (i) What is productive nephron repair? (ii) What are the cellular sources and drivers of repair? and (iii) How do RBK studies promote development of therapeutics? Also, we provide a guide to RBK's open access data hub for accessing, downloading, and further analyzing data sets.


Asunto(s)
Lesión Renal Aguda , Riñón , Lesión Renal Aguda/patología , Femenino , Fibrosis , Humanos , Inflamación/patología , Riñón/patología , Masculino , National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) , Regeneración , Estados Unidos
2.
J Am Soc Nephrol ; 32(4): 795-803, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33526471

RESUMEN

BACKGROUND: There is an urgent need for approaches to prevent and treat SARS-CoV-2 infection. Administration of soluble ACE2 protein acting as a decoy to bind to SARS-CoV-2 should limit viral uptake mediated by binding to membrane-bound full-length ACE2, and further therapeutic benefit should result from ensuring enzymatic ACE2 activity to affected organs in patients with COVID-19. METHODS: A short variant of human soluble ACE2 protein consisting of 618 amino acids (hACE2 1-618) was generated and fused with an albumin binding domain (ABD) using an artificial gene encoding ABDCon, with improved albumin binding affinity. Human kidney organoids were used for infectivity studies of SARS-CoV-2 in a BSL-3 facility to examine the neutralizing effect of these novel ACE2 variants. RESULTS: Whereas plasma ACE2 activity of the naked ACE2 1-618 and ACE2 1-740 lasted about 8 hours, the ACE2 1-618-ABD resulted in substantial activity at 96 hours, and it was still biologically active 3 days after injection. Human kidney organoids express ACE2 and TMPRSS2, and when infected with SARS-CoV-2, our modified long-acting ACE2 variant neutralized infection. CONCLUSIONS: This novel ACE2 1-618-ABD can neutralize SARS-CoV-2 infectivity in human kidney organoids, and its prolonged duration of action should ensure improved efficacy to prevent viral escape and dosing convenience.

3.
Am J Transplant ; 21(10): 3225-3238, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34212485

RESUMEN

Although cellular transplantation remains a relatively small field compared to solid organ transplantation, the prospects for advancement in basic science and clinical care remain bountiful. In this review, notable historical events and the current landscape of the field of cellular transplantation are reviewed with an emphasis on islets (allo- and xeno-), hepatocytes (including bioartificial liver), adoptive regulatory immunotherapy, and stem cells (SCs, specifically endogenous organ-specific and mesenchymal). Also, the nascent but rapidly evolving field of three-dimensional bioprinting is highlighted, including its major processing steps and latest achievements. To reach its full potential where cellular transplants are a more viable alternative than solid organ transplants, fundamental change in how the field is regulated and advanced is needed. Greater public and private investment in the development of cellular transplantation is required. Furthermore, consistent with the call of multiple national transplant societies for allo-islet transplants, the oversight of cellular transplants should mirror that of solid organ transplants and not be classified under the unsustainable, outdated model that requires licensing as a drug with the Food and Drug Administration. Cellular transplantation has the potential to bring profound benefit through progress in bioengineering and regenerative medicine, limiting immunosuppression-related toxicity, and providing markedly reduced surgical morbidity.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Trasplantes , Humanos , Tolerancia Inmunológica , Terapia de Inmunosupresión , Células Madre
4.
Bioconjug Chem ; 30(3): 944-951, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30830754

RESUMEN

Liposomal spherical nucleic acids (LSNAs) are a class of nanomaterial used broadly for biomedical applications. Their intrinsic capacity to rapidly enter cells and engage cell surface and intracellular ligands stems from their unique three-dimensional architecture, which consists of densely packed and uniformly oriented oligonucleotides on the surface of a liposomal core. Such structures are promising for therapeutics because they can carry chemical cargo within the lipid core in addition to the nucleic acids that define them, in principle enabling delivery of multiple signals to a single cell. On the basis of these traits, we have designed novel dual-targeting LSNAs that deliver a nucleic acid specific for TLR9 inhibition and a small molecule (TAK-242) that inhibits TLR4. Toll-like receptors (TLRs) play a large role in pathogen recognition and disease initiation, and TLR subtypes are differentially located within the lipid membranes of the cell surface and within intracellular endosomes. Oftentimes, in acute or chronic inflammatory conditions, multiple TLRs are activated, leading to stimulation of distinct, and sometimes overlapping, downstream pathways. As such, these inflammatory conditions may respond to attenuation of more than one initiating receptor. We show that dual targeting LSNAs, comprised of unilamellar liposomal cores, the INH-18 oligonucleotide sequence, and TAK-242 robustly inhibit TLR-9 and TLR-4 respectively, in engineered TLR reporter cells and primary mouse peritoneal macrophages. Importantly, the LSNAs exhibit up to a 10- and a 1000-fold increase, respectively, in TLR inhibition compared to the linear sequence and TAK-242 alone. Moreover, the timing of delivery is shown to be a critical factor in effecting TLR-inhibition, with near-complete TLR-4 inhibition occurring when cells were pretreated with SNAs for 4 h prior to stimulation. The most pronounced effect observed from this approach is the benefit of delivering the small molecule within the SNA via the receptor-mediated internalization pathway common to SNAs.


Asunto(s)
Liposomas , Macrófagos Peritoneales/efectos de los fármacos , Ácidos Nucleicos/metabolismo , Receptores Toll-Like/metabolismo , Animales , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Células HEK293 , Humanos , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/metabolismo , Macrófagos Peritoneales/metabolismo , Ratones , Ácidos Nucleicos/química
5.
J Am Soc Nephrol ; 28(5): 1370-1378, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28096308

RESUMEN

(Re)Building a Kidney is a National Institute of Diabetes and Digestive and Kidney Diseases-led consortium to optimize approaches for the isolation, expansion, and differentiation of appropriate kidney cell types and the integration of these cells into complex structures that replicate human kidney function. The ultimate goals of the consortium are two-fold: to develop and implement strategies for in vitro engineering of replacement kidney tissue, and to devise strategies to stimulate regeneration of nephrons in situ to restore failing kidney function. Projects within the consortium will answer fundamental questions regarding human gene expression in the developing kidney, essential signaling crosstalk between distinct cell types of the developing kidney, how to derive the many cell types of the kidney through directed differentiation of human pluripotent stem cells, which bioengineering or scaffolding strategies have the most potential for kidney tissue formation, and basic parameters of the regenerative response to injury. As these projects progress, the consortium will incorporate systematic investigations in physiologic function of in vitro and in vivo differentiated kidney tissue, strategies for engraftment in experimental animals, and development of therapeutic approaches to activate innate reparative responses.


Asunto(s)
Riñón/citología , Riñón/fisiología , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Separación Celular/métodos , Humanos , Células Madre Pluripotentes Inducidas , Riñón/crecimiento & desarrollo , Regeneración , Técnicas de Cultivo de Tejidos/métodos , Andamios del Tejido
6.
Biomacromolecules ; 17(12): 3940-3948, 2016 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-27936727

RESUMEN

Thrombosis within small-diameter vascular grafts limits the development of bioartificial, engineered vascular conduits, especially those derived from extracellular matrix (ECM). Here we describe an easy-to-implement strategy to chemically modify vascular ECM by covalently linking a collagen binding peptide (CBP) to heparin to form a heparin derivative (CBP-heparin) that selectively binds a subset of collagens. Modification of ECM with CBP-heparin leads to increased deposition of functional heparin (by ∼7.2-fold measured by glycosaminoglycan composition) and a corresponding reduction in platelet binding (>70%) and whole blood clotting (>80%) onto the ECM. Furthermore, addition of CBP-heparin to the ECM stabilizes long-term endothelial cell attachment to the lumen of ECM-derived vascular conduits, potentially through recruitment of heparin-binding growth factors that ultimately improve the durability of endothelialization in vitro. Overall, our findings provide a simple yet effective method to increase deposition of functional heparin on the surface of ECM-based vascular grafts and thereby minimize thrombogenicity of decellularized tissue, overcoming a significant challenge in tissue engineering of bioartificial vessels and vascularized organs.


Asunto(s)
Colágeno/metabolismo , Matriz Extracelular/metabolismo , Heparina/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Fragmentos de Péptidos/metabolismo , Trombosis/prevención & control , Animales , Materiales Biocompatibles Revestidos , Heparina/administración & dosificación , Heparina/química , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/química , Adhesividad Plaquetaria , Ratas , Ratas Sprague-Dawley , Trombosis/metabolismo , Trombosis/patología , Ingeniería de Tejidos , Andamios del Tejido
7.
Langmuir ; 31(31): 8642-53, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26158559

RESUMEN

Guided bone regeneration is a new concept of large bone defect therapy, which employs a barrier membrane to afford a protected room for osteogenesis and prevent the invasion of fibroblasts. In this study, we developed a novel barrier membrane made from lyophilized multilayered acellular human amnion membranes (AHAM). After decellularization, the AHAM preserved the structural and biomechanical integrity of the amnion extracellular matrix (ECM). The AHAM also showed minimal toxic effects when cocultured with mesenchymal stem cells (MSCs), as evidenced by high cell density, good cell viability, and efficient osteogenic differentiation after 21-day culturing. The effectiveness of the multilayered AHAM in guiding bone regeneration was evaluated using an in vivo rat tibia defect model. After 6 weeks of surgery, the multilayered AHAM showed great efficiency in acting as a shield to avoid the invasion of the fibrous tissues, stabilizing the bone grafts and inducing the massive bone growth. We hence concluded that the advantages of the lyophilized multilayered AHAM barrier membrane are as follows: preservation of the structural and mechanical properties of the amnion ECM, easiness for preparation and handling, flexibility in adjusting the thickness and mechanical properties to suit the application, and efficiency in inducing bone growth and avoiding fibrous tissues invasion.


Asunto(s)
Amnios/metabolismo , Regeneración Ósea , Matriz Extracelular/química , Regeneración Tisular Dirigida , Andamios del Tejido/química , Animales , Supervivencia Celular , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/citología , Ratas , Ratas Sprague-Dawley , Ingeniería de Tejidos
8.
Curr Opin Nephrol Hypertens ; 23(4): 399-405, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24848937

RESUMEN

PURPOSE OF REVIEW: The severe shortage of suitable donor kidneys limits organ transplantation to a small fraction of patients suffering from end-stage renal failure. Engineering autologous kidney grafts on-demand would potentially alleviate this shortage, thereby reducing healthcare costs, improving quality of life, and increasing longevity for patients suffering from renal failure. RECENT FINDINGS: Over the past 2 years, several studies have demonstrated that structurally intact extracellular matrix (ECM) scaffolds can be derived from human or animal kidneys through decellularization, a process in which detergent or enzyme solutions are perfused through the renal vasculature to remove the native cells. The future clinical paradigm would be to repopulate these decellularized kidney matrices with patient-derived renal stem cells to regenerate a functional kidney graft. Recent research aiming toward this goal has focused on the optimization of decellularization protocols, design of bioreactor systems to seed cells into appropriate compartments of the renal ECM to nurture their growth to restore kidney function, and differentiation of pluripotent stem cells (PSCs) into renal progenitor lineages. SUMMARY: New research efforts utilizing bio-mimetic perfusion bioreactor systems to repopulate decellularized kidney scaffolds, coupled with the differentiation of PSCs into renal progenitor cell populations, indicate substantial progress toward the ultimate goal of building a functional kidney graft on-demand.


Asunto(s)
Riñón/fisiología , Células Madre Pluripotentes/fisiología , Regeneración , Animales , Bioingeniería/métodos , Diferenciación Celular/fisiología , Matriz Extracelular , Humanos , Andamios del Tejido
9.
Liver Transpl ; 19(4): 437-49, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23408461

RESUMEN

An accurate clinical assessment of hepatic steatosis before transplantation is critical for successful outcomes after liver transplantation, especially if a pathologist is not available at the time of procurement. This prospective study investigated the surgeon's accuracy in predicting hepatic steatosis and organ quality in 201 adult donor livers. A steatosis assessment by a blinded expert pathologist served as the reference gold standard. The surgeon's steatosis estimate correlated more strongly with large-droplet macrovesicular steatosis [ld-MaS; nonparametric Spearman correlation coefficient (rS ) = 0.504] versus small-droplet macrovesicular steatosis (sd-MaS; rS = 0.398). True microvesicular steatosis was present in only 2 donors (1%). Liver texture criteria (yellowness, absence of scratch marks, and round edges) were mainly associated with ld-MaS (variance = 0.619) and were less associated with sd-MaS (variance = 0.264). The prediction of ≥30% ld-MaS versus <30% ld-MaS was excellent when liver texture criteria were used (accuracy = 86.2%), but it was less accurate when the surgeon's direct estimation of the steatosis percentage was used (accuracy = 75.5%). The surgeon's quality grading correlated with the degree of ld-MaS and the surgeon's steatosis estimate as well as the incidence of poor initial function and primary nonfunction. In conclusion, the precise estimation of steatosis remains challenging even in experienced hands. Liver texture characteristics are more helpful in identifying macrosteatotic organs than the surgeon's actual perception of steatosis. These findings are especially important when histological assessment is not available at the donor's hospital.


Asunto(s)
Selección de Donante , Hígado Graso/patología , Trasplante de Hígado , Patología Quirúrgica/métodos , Donantes de Tejidos , Adolescente , Adulto , Anciano , Biopsia , Técnicas de Apoyo para la Decisión , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Variaciones Dependientes del Observador , Valor Predictivo de las Pruebas , Estudios Prospectivos , Reproducibilidad de los Resultados , Índice de Severidad de la Enfermedad , Adulto Joven
10.
Acta Biomater ; 167: 293-308, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37178990

RESUMEN

The extra-cellular matrix (ECM) is a complex and rich microenvironment that is exposed and over-expressed across several injury or disease pathologies. Biomaterial therapeutics are often enriched with peptide binders to target the ECM with greater specificity. Hyaluronic acid (HA) is a major component of the ECM, yet to date, few HA adherent peptides have been discovered. A class of HA binding peptides was designed using B(X7)B hyaluronic acid binding domains inspired from the helical face of the Receptor for Hyaluronic Acid Mediated Motility (RHAMM). These peptides were bioengineered using a custom alpha helical net method, allowing for the enrichment of multiple B(X7)B domains and the optimization of contiguous and non-contiguous domain orientations. Unexpectedly, the molecules also exhibited the behaviour of nanofiber forming self-assembling peptides and were investigated for this characteristic. Ten 23-27 amino acid residue peptides were assessed. Simple molecular modelling was used to depict helical secondary structures. Binding assays were performed with varying concentrations (1-10 mg/mL) and extra-cellular matrices (HA, collagens I-IV, elastin, and Geltrex). Concentration mediated secondary structures were assessed using circular dichroism (CD), and higher order nanostructures were visualized using transmission electron microscopy (TEM). All peptides formed the initial apparent 310/alpha-helices, yet peptides 17x-3, 4, BHP3 and BHP4 were HA specific and potent (i.e., a significant effect) binders at increasing concentrations. These peptides shifted from apparent 310/alpha-helical structures at low concentration to beta-sheets at increasing concentration and also formed nanofibers which are noted as self-assembling structures. Several of the HA binding peptides outperformed our positive control (mPEP35) at 3-4 times higher concentrations, and were enhanced by self-assembly as each of these groups had observable nanofibers. STATEMENT OF SIGNIFICANCE: Specific biomolecules or peptides have played a crucial role in developing materials or systems to deliver key drugs and therapeutics to a broad spectrum of diseases and disorders. In these diseased tissues, cells build protein/sugar networks, which are uniquely exposed and great targets to deliver drugs to. Hyaluronic acid (HA) is involved in every stage of injury and is abundant in cancer. To date, only two HA specific peptides have been discovered. In our work, we have designed a way to model and trace binding regions as they appear on the face of a helical peptide. Using this method we have created a family of peptides enriched with HA binding domains that stick with 3-4 higher affinity than those previously discovered.


Asunto(s)
Ácido Hialurónico , Péptidos , Ácido Hialurónico/metabolismo , Péptidos/química , Proteínas/metabolismo , Proteínas Portadoras/metabolismo , Matriz Extracelular/metabolismo
11.
Cancer Res Commun ; 3(2): 245-257, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36860653

RESUMEN

Although cisplatin remains a backbone of standard-of-care chemotherapy regimens for a variety of malignancies, its use is often associated with severe dose-limiting toxicities (DLT). Notably, 30%-40% of patients treated with cisplatin-based regimens are forced to discontinue treatment after experiencing nephrotoxicity as a DLT. New approaches that simultaneously prevent renal toxicity while improving therapeutic response have the potential to make a major clinical impact for patients with multiple forms of cancer. Here, we report that pevonedistat (MLN4924), a first-in-class NEDDylation inhibitor, alleviates nephrotoxicity and synergistically enhances the efficacy of cisplatin in head and neck squamous cell carcinoma (HNSCC) models. We demonstrate that pevonedistat protects normal kidney cells from injury while enhancing the anticancer activity of cisplatin through a thioredoxin-interacting protein (TXNIP)-mediated mechanism. Cotreatment with pevonedistat and cisplatin yielded dramatic HNSCC tumor regression and long-term animal survival in 100% of treated mice. Importantly, the combination decreased nephrotoxicity induced by cisplatin monotherapy as evidenced by the blockade of kidney injury molecule-1 (KIM-1) and TXNIP expression, a reduction in collapsed glomeruli and necrotic cast formation, and inhibition of cisplatin-mediated animal weight loss. Inhibition of NEDDylation represents a novel strategy to prevent cisplatin-induced nephrotoxicity while simultaneously enhancing its anticancer activity through a redox-mediated mechanism. Significance: Cisplatin therapy is associated with significant nephrotoxicity, which limits its clinical use. Here we demonstrate that NEDDylation inhibition with pevonedistat is a novel approach to selectively prevent cisplatin-induced oxidative damage to the kidneys while simultaneously enhancing its anticancer efficacy. Clinical evaluation of the combination of pevonedistat and cisplatin is warranted.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Neoplasias de Cabeza y Cuello , Ratones , Animales , Cisplatino/efectos adversos , Carcinoma de Células Escamosas de Cabeza y Cuello , Apoptosis , Neoplasias de Cabeza y Cuello/tratamiento farmacológico
12.
Curr Opin Organ Transplant ; 17(3): 235-40, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22476224

RESUMEN

PURPOSE OF REVIEW: The success of liver transplantation has increased over the past 20 years due to improved immunosuppressive medications, surgical technique and donor-recipient selection. To date, the number of patients waiting for a liver transplant exceeds the number of transplants performed yearly by over a 2 : 1 ratio. Despite efforts to expand the donor pool, mortality of patients waiting for a liver remains high due to the shortage of donor organs. Herein, we discuss options for liver replacement that are currently under development. RECENT FINDINGS: Extracorporeal bioactive liver perfusion devices were investigated in the late 1990s and preliminarily demonstrated safety but failed to show clinical efficacy. Current research is ongoing, but the focus has shifted to xenotransplantation of whole organs, organ engineering and cell transplantation. These new modalities are limited to small and large animal studies and each present unique advantages and limitations. SUMMARY: Discovery of new sources of organs or cells to replace a damaged liver may be the only long-term solution to provide definitive therapy to all patients who require transplantation. The past 2 years have seen notable achievements in xenotransplantation, tissue engineering and cell transplantation. Though challenges remain, now identified, they may be readily solved.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Fallo Hepático/terapia , Trasplante de Hígado , Hígado Artificial , Trasplante Heterólogo , Animales , Hepatocitos/trasplante , Humanos , Fallo Hepático/cirugía , Ingeniería de Tejidos
13.
Stem Cells Transl Med ; 11(11): 1151-1164, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36173887

RESUMEN

Stem cells are enabling an improved understanding of the peripheral arterial disease, and patient-specific stem cell-derived endothelial cells (ECs) present major advantages as a therapeutic modality. However, applications of patient-specific induced pluripotent stem cell (iPSC)-derived ECs are limited by rapid loss of mature cellular function in culture. We hypothesized that changes in autophagy impact the phenotype and cellular proliferation of iPSC-ECs. Endothelial cells were differentiated from distinct induced pluripotent stem cell lines in 2D culture and purified for CD144 positive cells. Autophagy, mitochondrial morphology, and proliferation were characterized during differentiation and over serial passages in culture. We found that autophagy activity was stimulated during differentiation but stagnated in mature iPSC-ECs. Mitochondria remodeled through mitophagy during differentiation and demonstrated increasing membrane potential and mass through serial passages; however, these plateaued, coinciding with decreased proliferation. To evaluate for oxidative damage, iPSC-ECs were alternatively grown under hypoxic culture conditions; however, hypoxia only transiently improved the proliferation. Stimulating mTOR-independent ULK1-mediated autophagy with a plant derivative AMP kinase activator Rg2 significantly improved proliferative capacity of iPSC-ECs over multiple passages. Therefore, autophagy, a known mediator of longevity, played an active role in remodeling mitochondria during maturation from pluripotency to a terminally differentiated state. Autophagy failed to compensate for increasing mitochondrial mass over serial passages, which correlated with loss of proliferation in iPSC-ECs. Stimulating ULK1-kinase-driven autophagy conferred improved proliferation and longevity over multiple passages in culture. This represents a novel approach to overcoming a major barrier limiting the use of iPSC-ECs for clinical and research applications.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Endoteliales , Diferenciación Celular , Autofagia , Serina-Treonina Quinasas TOR/metabolismo , Endotelio
14.
Open Forum Infect Dis ; 9(12): ofac641, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36601554

RESUMEN

Background: The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has demonstrated the need to share data and biospecimens broadly to optimize clinical outcomes for US military Veterans. Methods: In response, the Veterans Health Administration established VA SHIELD (Science and Health Initiative to Combat Infectious and Emerging Life-threatening Diseases), a comprehensive biorepository of specimens and clinical data from affected Veterans to advance research and public health surveillance and to improve diagnostic and therapeutic capabilities. Results: VA SHIELD now comprises 12 sites collecting de-identified biospecimens from US Veterans affected by SARS-CoV-2. In addition, 2 biorepository sites, a data processing center, and a coordinating center have been established under the direction of the Veterans Affairs Office of Research and Development. Phase 1 of VA SHIELD comprises 34 157 samples. Of these, 83.8% had positive tests for SARS-CoV-2, with the remainder serving as contemporaneous controls. The samples include nasopharyngeal swabs (57.9%), plasma (27.9%), and sera (12.5%). The associated clinical and demographic information available permits the evaluation of biological data in the context of patient demographics, clinical experience and management, vaccinations, and comorbidities. Conclusions: VA SHIELD is representative of US national diversity with a significant potential to impact national healthcare. VA SHIELD will support future projects designed to better understand SARS-CoV-2 and other emergent healthcare crises. To the extent possible, VA SHIELD will facilitate the discovery of diagnostics and therapeutics intended to diminish COVID-19 morbidity and mortality and to reduce the impact of new emerging threats to the health of US Veterans and populations worldwide.

16.
Integr Biol (Camb) ; 13(7): 184-195, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34184053

RESUMEN

Alcohol injury induces hepatic fibrosis which gradually progresses to cirrhosis, sometimes may lead to liver cancer. Animal models are less efficient in mimicking responses of human liver cells, whereas in vitro models discussed so far are majorly based on rodent cells. In this work, a coculture of primary human hepatocytes (PHHs) with LX-2 cells was established on the unmodified (C:F_0:0), collagen-I modified (C:F_1:0), fibronectin modified (C:F_0:1) and 3:1 collagen-I to fibronectin modified (C:F_3:1) 3D electrospun fibrous scaffolds. The effect of alcohol injury was evaluated on this cell-scaffold model at 0-40 µl/ml alcohol concentrations over 14 days of culture period by using the gold standard sandwich culture as the control. Among all the culture groups, C:F_3:1 scaffold was able to maintain translational and transcriptional properties of human liver cells at all concentrations of alcohol treatment. The study reveals that, PHHs on C:F_3:1 were able to maintain ~4-fold and ~1.6-fold higher secretion of albumin than the gold standard sandwich culture on Day 3 and Day 7, respectively. When treated with alcohol, at concentrations of 20 and 40 µl/ml, albumin secretion was also observed to be higher (~2-fold) when compared to the gold standard sandwich culture. Again as expected, in C:F_3:1 culture group on 40 µl/ml alcohol treatment, albumin gene expression decreased by ~2-fold due to alcohol toxicity, whereas CYP2C9, CYP3A4, CYP2E1 and CYP1A2 gene expressions upregulated by ~3.5, ~~4, ~5 and ~15-fold, respectively in response to the alcohol injury. LX-2 cells also acquire more quiescent phenotype on C:F_3:1 scaffolds when compared to the gold standard sandwich culture upon alcohol treatment. Thus, C:F_3:1 scaffold with human liver cells was established as the potential platform to scan alcohol toxicity at varied alcohol concentrations. Thus, it can pave a promising path not only to support functional healthy human liver cells for liver tissue engineering but also to examine potential drugs to study the progression or inhibition of alcoholic liver fibrosis in vitro.


Asunto(s)
Hepatopatías Alcohólicas , Nanofibras , Animales , Hepatocitos , Humanos , Ingeniería de Tejidos , Andamios del Tejido
17.
J Biol Methods ; 8(2): e150, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34258308

RESUMEN

The prevalence of kidney dysfunction continues to increase worldwide, driving the need to develop transplantable renal tissues. The kidney develops from four major renal progenitor populations: nephron epithelial, ureteric epithelial, interstitial and endothelial progenitors. Methods have been developed to generate kidney organoids but few or dispersed tubular clusters within the organoids hamper its use in regenerative applications. Here, we describe a detailed protocol of asynchronous mixing of kidney progenitors using organotypic culture conditions to generate kidney organoids tightly packed with tubular clusters and major renal structures including endothelial network and functional proximal tubules. This protocol provides guidance in the culture of human embryonic stem cells from a National Institute of Health-approved line and their directed differentiation into kidney organoids. Our 18-day protocol provides a rapid method to generate kidney organoids that facilitate the study of different nephrological events including in vitro tissue development, disease modeling and chemical screening. However, further studies are required to optimize the protocol to generate additional renal-specific cell types, interconnected nephron segments and physiologically functional renal tissues.

18.
Mater Sci Eng C Mater Biol Appl ; 111: 110723, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32279797

RESUMEN

Extracellular matrix (ECM) proteins are important regulators of cellular behaviour in the native environment. It has been established that ECM proteins - collagen-I and fibronectin - are present in liver extracellular matrix and regulate specific functions of primary hepatocytes. While scaffolds grafted with the individual ECM protein have shown support for hepatocyte functional properties in vitro, the synergistic effects of both ECM proteins remain to be explored. Such studies are even more limited when three-dimensional (3D) scaffolds are involved. In the current work, the fabrication of a series of highly porous poly(lactic-co-glycolic acid) (PLGA) 3D electrospun scaffolds, simultaneously modified with both collagen-I and fibronectin, has been demonstrated. Different ratios of collagen-I to fibronectin were optimized to study the synergistic effects of the proteins in supporting the viability and functional properties of Huh-7.5 cells. The ratio of collagen-I to fibronectin at 3:1 was found to provide the most efficient chemisorption on the 3D scaffolds. At this ratio, the total protein content that can be grafted on the scaffolds was the highest and the most homogeous. This led to remarkable enhancement of cell seeding efficiency as well as proliferation. Most importantly, liver specific genes such as albumin and cytochrome P450 enzymes i.e. CYP3A4 and CYP3A7 were significantly upregulated by ~12.5, 7 and 4.5 fold respectively, as compared to unmodified PLGA scaffolds after 28 days of culture. Compared to single-protein modified scaffolds, scaffolds modified with 3:1 collagen to fibronectin result in a rise of the albumin gene expression of cultured cells by ~8 to 10 fold, whereas CYP3A4 gene expression improved by ~5 to 7 fold and CYP3A7 gene expression improved by ~4 to 4.5 fold after a long culture period of 28 days. Albumin secretion was improved by ~4 fold compared to unmodified PLGA scaffolds, ~3 fold compared to collagen-I modified culture groups and ~2 fold compared to fibronectin modified culture groups. The multi-protein modified scaffolds, at the optimum ratio, were able to significantly enhance functional properties of the liver cells. This simple yet highly functioning platform would be useful for in vitro culture of liver cells for both drug screening as well as translational purposes.


Asunto(s)
Colágeno Tipo I/química , Fibronectinas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Andamios del Tejido/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Técnicas de Cultivo de Célula , Línea Celular , Proliferación Celular/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Porosidad , Albúmina Sérica/metabolismo , Regulación hacia Arriba/efectos de los fármacos
19.
Commun Biol ; 3(1): 231, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32393756

RESUMEN

A fundamental challenge in emulating kidney tissue formation through directed differentiation of human pluripotent stem cells is that kidney development is iterative, and to reproduce the asynchronous mix of differentiation states found in the fetal kidney we combined cells differentiated at different times in the same organoid. Asynchronous mixing promoted nephrogenesis, and heterochronic organoids were well vascularized when engrafted under the kidney capsule. Micro-CT and injection of a circulating vascular marker demonstrated that engrafted kidney tissue was connected to the systemic circulation by 2 weeks after engraftment. Proximal tubule glucose uptake was confirmed, but despite these promising measures of graft function, overgrowth of stromal cells prevented long-term study. We propose that this is a technical feature of the engraftment procedure rather than a specific shortcoming of the directed differentiation because kidney organoids derived from primary cells and whole embryonic kidneys develop similar stromal overgrowth when engrafted under the kidney capsule.


Asunto(s)
Diferenciación Celular , Riñón/crecimiento & desarrollo , Organogénesis/fisiología , Organoides/crecimiento & desarrollo , Células Madre Pluripotentes/trasplante , Animales , Línea Celular , Femenino , Humanos , Masculino , Ratones
20.
J Vis Exp ; (162)2020 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-32925888

RESUMEN

Limb transplant in particular and vascularized composite allotransplant (VCA) in general have wide therapeutic promise that have been stymied by current limitations in immunosuppression and functional neuromotor recovery. Many animal models have been developed for studying unique features of VCA, but here we present a robust reproducible model of orthotopic hind limb transplant in rats designed to simultaneously investigate both aspects of current VCA limitation: immunosuppression strategies and functional neuromotor recovery. At the core of the model rests a commitment to meticulous, time-tested microsurgical techniques such as hand sewn vascular anastomoses and hand sewn neural coaptation of the femoral nerve and the sciatic nerve. This approach yields durable limb reconstructions that allow for longer lived animals capable of rehabilitation, resumption of daily activities, and functional testing. With short-term treatment of conventional immunosuppressive agents, allotransplanted animals survived up to 70 days post-transplant, and isotransplanted animals provide long lived controls beyond 200 days post-operatively. Evidence of neurologic functional recovery is present by 30 days post operatively. This model not only provides a useful platform for interrogating immunological questions unique to VCA and nerve regeneration, but also allows for in vivo testing of new therapeutic strategies specifically tailored for VCA.


Asunto(s)
Miembro Posterior/trasplante , Regeneración Nerviosa/fisiología , Alotrasplante Compuesto Vascularizado/métodos , Animales , Masculino , Modelos Animales , Ratas , Recuperación de la Función
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA