Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34156466

RESUMEN

Store-operated Ca2+ entry is a central component of intracellular Ca2+ signaling pathways. The Ca2+ release-activated channel (CRAC) mediates store-operated Ca2+ entry in many different cell types. The CRAC channel is composed of the plasma membrane (PM)-localized Orai1 channel and endoplasmic reticulum (ER)-localized STIM1 Ca2+ sensor. Upon ER Ca2+ store depletion, Orai1 and STIM1 form complexes at ER-PM junctions, leading to the formation of activated CRAC channels. Although the importance of CRAC channels is well described, the underlying mechanisms that regulate the recruitment of Orai1 to ER-PM junctions are not fully understood. Here, we describe the rapid and transient S-acylation of Orai1. Using biochemical approaches, we show that Orai1 is rapidly S-acylated at cysteine 143 upon ER Ca2+ store depletion. Importantly, S-acylation of cysteine 143 is required for Orai1-mediated Ca2+ entry and recruitment to STIM1 puncta. We conclude that store depletion-induced S-acylation of Orai1 is necessary for recruitment to ER-PM junctions, subsequent binding to STIM1 and channel activation.


Asunto(s)
Canales de Calcio , Calcio , Acilación , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Señalización del Calcio , Membrana Celular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo
2.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34080635

RESUMEN

Despite the recognized significance of reversible protein lipidation (S-acylation) for T cell receptor signal transduction, the enzymatic control of this post-translational modification in T cells remains poorly understood. Here, we demonstrate that DHHC21 (also known as ZDHHC21), a member of the DHHC family of mammalian protein acyltransferases, mediates T cell receptor-induced S-acylation of proximal T cell signaling proteins. Using Zdhhc21dep mice, which express a functionally deficient version of DHHC21, we show that DHHC21 is a Ca2+/calmodulin-dependent enzyme critical for activation of naïve CD4+ T cells in response to T cell receptor stimulation. We find that disruption of the Ca2+/calmodulin-binding domain of DHHC21 does not affect thymic T cell development but prevents differentiation of peripheral CD4+ T cells into Th1, Th2 and Th17 effector T helper lineages. Our findings identify DHHC21 as an essential component of the T cell receptor signaling machinery and define a new role for protein acyltransferases in regulation of T cell-mediated immunity.


Asunto(s)
Linfocitos T CD4-Positivos , Calcio , Acetiltransferasas , Aciltransferasas/genética , Animales , Diferenciación Celular , Ratones , Receptores de Antígenos de Linfocitos T/genética
3.
J Biol Chem ; 298(9): 102303, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35934052

RESUMEN

Many cell surface stimuli cause calcium release from endoplasmic reticulum (ER) stores to regulate cellular physiology. Upon ER calcium store depletion, the ER-resident protein stromal interaction molecule 1 (STIM1) physically interacts with plasma membrane protein Orai1 to induce calcium release-activated calcium (CRAC) currents that conduct calcium influx from the extracellular milieu. Although the physiological relevance of this process is well established, the mechanism supporting the assembly of these proteins is incompletely understood. Earlier we demonstrated a previously unknown post-translational modification of Orai1 with long-chain fatty acids, known as S-acylation. We found that S-acylation of Orai1 is dynamically regulated in a stimulus-dependent manner and essential for its function as a calcium channel. Here using the acyl resin-assisted capture assay, we show that STIM1 is also rapidly S-acylated at cysteine 437 upon ER calcium store depletion. Using a combination of live cell imaging and electrophysiology approaches with a mutant STIM1 protein, which could not be S-acylated, we determined that the S-acylation of STIM1 is required for the assembly of STIM1 into puncta with Orai1 and full CRAC channel function. Together with the S-acylation of Orai1, our data suggest that stimulus-dependent S-acylation of CRAC channel components Orai1 and STIM1 is a critical mechanism facilitating the CRAC channel assembly and function.


Asunto(s)
Calcio , Cisteína , Acilación , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Cisteína/metabolismo , Retículo Endoplásmico/metabolismo , Ácidos Grasos/metabolismo , Proteínas de la Membrana/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo
4.
Biophys J ; 115(8): 1431-1444, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30292393

RESUMEN

The lower critical solution temperature (LCST) of the thermo-responsive engineered elastin-like polypeptide (ELP) biopolymer is being exploited for the thermal targeted delivery of doxorubicin (Dox) to solid tumors. We examine the impact of Dox labeling on the thermodynamic and hydrodynamic behavior of an ELP drug carrier and how Dox influences the liquid-liquid phase separation (LLPS). Turbidity, dynamic light scattering (DLS), and differential scanning calorimetry measurements show that ELP undergoes a cooperative liquid-liquid phase separation from a soluble to insoluble coacervated state that is enhanced by Dox labeling. Circular dichroism measurements show that below the LCST ELP consists of both random coils and temperature-dependent ß-turn structures. Labeling with Dox further enhances ß-turn formation. DLS measurements reveal a significant increase in the hydrodynamic radius of ELP below the LCST consistent with weak self-association. Dox-labeled SynB1-ELP1 (Dox-ELP) has a significant increase in the hydrodynamic radius by DLS measurements that is consistent with stable oligomers and, at high Dox-ELP concentrations, micelle structures. Enhanced association by Dox-ELP is confirmed by sedimentation velocity analytical ultracentrifugation measurements. Both ELP self-association and the ELP inverse phase transition are entropically driven with positive changes in enthalpy and entropy. We show by turbidity and DLS that the ELP phase transition is monophasic, whereas mixtures of ELP and Dox-ELP are biphasic, with Dox-labeled ELP phase changing first and unlabeled ELP partitioning into the coacervate as the temperature is raised. DLS reveals a complex growth in droplet sizes consistent with coalescence and fusion of liquid droplets. Differential scanning calorimetry measurements show a -11 kcal/mol change in enthalpy for Dox-ELP coacervation relative to the unlabeled ELP, consistent with droplet formation being stabilized by favorable enthalpic interactions. We propose that the ELP phase change is initiated by ELP self-association, enhanced by increased Dox-ELP oligomer and micelle formation and stabilized by favorable enthalpic interactions in the liquid droplets.


Asunto(s)
Doxorrubicina/química , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Elastina/química , Extracción Líquido-Líquido/métodos , Péptidos/administración & dosificación , Transición de Fase , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacología , Péptidos de Penetración Celular/administración & dosificación , Péptidos de Penetración Celular/química , Doxorrubicina/administración & dosificación , Humanos , Hidrodinámica , Neoplasias/tratamiento farmacológico , Péptidos/química , Péptidos/aislamiento & purificación , Temperatura , Termodinámica
5.
Front Physiol ; 13: 1040968, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467682

RESUMEN

S-acylation, the reversible lipidation of free cysteine residues with long-chain fatty acids, is a highly dynamic post-translational protein modification that has recently emerged as an important regulator of the T cell function. The reversible nature of S-acylation sets this modification apart from other forms of protein lipidation and allows it to play a unique role in intracellular signal transduction. In recent years, a significant number of T cell proteins, including receptors, enzymes, ion channels, and adaptor proteins, were identified as S-acylated. It has been shown that S-acylation critically contributes to their function by regulating protein localization, stability and protein-protein interactions. Furthermore, it has been demonstrated that zDHHC protein acyltransferases, the family of enzymes mediating this modification, also play a prominent role in T cell activation and differentiation. In this review, we aim to highlight the diversity of proteins undergoing S-acylation in T cells, elucidate the mechanisms by which reversible lipidation can impact protein function, and introduce protein acyltransferases as a novel class of regulatory T cell proteins.

6.
J Vis Exp ; (158)2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32338654

RESUMEN

Protein S-acylation, also referred to as S-palmitoylation, is a reversible post-translational modification of cysteine residues with long-chain fatty acids via a labile thioester bond. S-acylation, which is emerging as a widespread regulatory mechanism, can modulate almost all aspects of the biological activity of proteins, from complex formation to protein trafficking and protein stability. The recent progress in understanding of the biological function of protein S-acylation was achieved largely due to the development of novel biochemical tools allowing robust and sensitive detection of protein S-acylation in a variety of biological samples. Here, we describe acyl resin-assisted capture (Acyl-RAC), a recently developed method based on selective capture of endogenously S-acylated proteins by thiol-reactive Sepharose beads. Compared to existing approaches, Acyl-RAC requires fewer steps and can yield more reliable results when coupled with mass spectrometry for identification of novel S-acylation targets. A major limitation in this technique is the lack of ability to discriminate between fatty acid species attached to cysteines via the same thioester bond.


Asunto(s)
Acilación/genética , Proteína S/metabolismo
7.
Chem Sci ; 11(1): 264-275, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34040721

RESUMEN

Treatment of malignant and non-malignant cultured human cell lines with a cytotoxic IC50 dose of ∼2 µM tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(ii) chloride (RPC2) retards or arrests microtubule motion as tracked by visualizing fluorescently-tagged microtubule plus end-tracking proteins. Immunofluorescent microscopic images of the microtubules in fixed cells show substantial changes to cellular microtubule network and to overall cell morphology upon treatment with RPC2. Flow cytometry with MCF7 and H358 cells reveals only minor elevations of the number of cells in G2/M phase, suggesting that the observed cytotoxicity is not tied to mitotic arrest. In vitro studies with purified tubulin reveal that RPC2 acts to promote tubulin polymerization and when imaged by electron microscopy, these microtubules look normal in appearance. Isothermal titration calorimetry measurements show an associative binding constant of 4.8 × 106 M-1 for RPC2 to preformed microtubules and support a 1 : 1 RPC2 to tubulin dimer stoichiometry. Competition experiments show RPC2 does not compete for the taxane binding site. Consistent with this tight binding, over 80% of the ruthenium in treated cells is co-localized with the cytoskeletal proteins. These data support RPC2 acting as an in vivo microtubule stabilizing agent and sharing many similarities with cells treated with paclitaxel.

8.
ACS Omega ; 3(9): 11582-11591, 2018 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-30320266

RESUMEN

Diminazene, DMZ, (or berenil) has been reported as a tight binder of G-quadruplexes. G-Quadruplex structures are often located in the promotor regions of oncogenes and may play a regulatory role in gene expression based on the stability of the folding topology. In this study, attempts have been made to characterize the specificity of DMZ binding toward multiple G-quadruplex topologies or foldamers. Mutant sequences of the G-quadruplex forming promotor regions of several oncogenes were designed to exhibit restricted loop lengths and folding topologies. Circular dichroism was used to confirm the quadruplex topology of mutant BCL2, KRAS, and c-MYC sequences, human telomere (Na+ and K+) G-quadruplexes and their complexes with DMZ and analogs thereof. Isothermal titration calorimetry was used to generate a complete thermodynamic profile (ΔG, ΔH, -TΔS) for the formation of DMZ and analog complexes with the target G-quadruplexes. DMZ binds to parallel and/or mixed parallel/antiparallel quadruplex DNA motifs with stoichiometries up to 8:1 and via three binding modes with varying affinities. In the case of the parallel G-quadruplexes, with the exception of the long-looped c-MYC mutant, the highest affinity binding event (mode 1) is driven by enthalpy. DMZ binding to the long-looped c-MYC mutant exhibits a very favorable entropy change in addition to a moderately favorable enthalpy change. Mode 1 binding to the antiparallel and mixed parallel/antiparallel hTel quadruplexes is also driven by favorable enthalpy changes. In all cases, the intermediate DMZ affinity binding (mode 2) is driven almost entirely by entropy, with small or unfavorable enthalpic contributions. The weakest binding event (mode 3) is also entropically driven with small or moderate enthalpic contributions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA