Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
PLoS One ; 8(3): e58578, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23505537

RESUMEN

Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2), preventing the changes in free cellular Na(+) and K(+) concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET's broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET's documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues.


Asunto(s)
Muerte Celular/fisiología , Canales Iónicos/metabolismo , Lactalbúmina/metabolismo , Ácidos Oléicos/metabolismo , Transporte Biológico , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Análisis por Conglomerados , Perfilación de la Expresión Génica , Humanos , Inmunidad Innata , Espacio Intracelular/metabolismo , Canales Iónicos/antagonistas & inhibidores , Lactalbúmina/inmunología , Ácidos Oléicos/inmunología , Fosforilación , Potasio/metabolismo , Transducción de Señal , Sodio/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
2.
Proc Natl Acad Sci U S A ; 102(16): 5886-91, 2005 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-15824317

RESUMEN

Chlorophyll biosynthesis is a process involving approximately 20 different enzymatic steps. Half of these steps are common to the biosynthesis of other tetrapyrroles, such as heme. One of the least understood enzymatic steps is formation of the isocyclic ring, which is a characteristic feature of all (bacterio)chlorophyll molecules. In chloroplasts, formation of the isocyclic ring is an aerobic reaction catalyzed by Mg-protoporphyrin IX monomethyl ester cyclase. An in vitro assay for the aerobic cyclase reaction required membrane-bound and soluble components from the chloroplasts. Extracts from barley (Hordeum vulgare L.) mutants at the Xantha-l and Viridis-k loci showed no cyclase activity. Fractionation of isolated plastids by Percoll gradient centrifugation showed that xantha-l and viridis-k mutants are defective in components associated with chloroplast membranes. The Xantha-l gene, corresponding to Arabidopsis thaliana CHL27, Rubrivivax gelatinosus acsF, Chlamydomonas reinhardtii CRD1, and CTH1 and situated at the short arm of barley chromosome 3 (3H), was cloned, and the mutations in xantha-l(35), xantha-l(81), and xantha-l(82) were characterized. This finding connected biochemical and genetic data because it demonstrated that Xantha-l encodes a membrane-bound cyclase subunit. The evidence suggests that the aerobic cyclase requires at least one soluble and two membrane-bound components.


Asunto(s)
Clorofila/biosíntesis , Hordeum/enzimología , Proteínas de la Membrana/metabolismo , Proteínas de Plantas/metabolismo , Subunidades de Proteína/metabolismo , Protoporfirinas/química , Secuencia de Aminoácidos , Secuencia de Bases , Cloroplastos/química , Hordeum/química , Hordeum/genética , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Estructura Molecular , Fenotipo , Proteínas de Plantas/genética , Subunidades de Proteína/genética , Protoporfirinas/metabolismo , Alineación de Secuencia , Fracciones Subcelulares/química , Fracciones Subcelulares/enzimología
3.
Proc Natl Acad Sci U S A ; 100(26): 16119-24, 2003 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-14673103

RESUMEN

CHL27, the Arabidopsis homologue to Chlamydomonas Crd1, a plastid-localized putative diiron protein, is required for the synthesis of protochlorophyllide and therefore is a candidate subunit of the aerobic cyclase in chlorophyll biosynthesis. delta-Aminolevulinic acid-fed antisense Arabidopsis plants with reduced amounts of Crd1/CHL27 accumulate Mg-protoporphyrin IX monomethyl ester, the substrate of the cyclase reaction. Mutant plants have chlorotic leaves with reduced abundance of all chlorophyll proteins. Fractionation of Arabidopsis chloroplast membranes shows that Crd1/CHL27 is equally distributed on a membrane-weight basis in the thylakoid and inner-envelope membranes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de la Membrana/metabolismo , Oxidorreductasas/metabolismo , Protoclorofilida/biosíntesis , Ácido Aminolevulínico/farmacología , Arabidopsis/efectos de los fármacos , Membrana Celular/metabolismo , Cloroplastos/metabolismo , Orgánulos/efectos de los fármacos , Orgánulos/metabolismo , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Tilacoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA