Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Genes Dev ; 34(3-4): 226-238, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31919190

RESUMEN

Centromeres are maintained epigenetically by the presence of CENP-A, an evolutionarily conserved histone H3 variant, which directs kinetochore assembly and hence centromere function. To identify factors that promote assembly of CENP-A chromatin, we affinity-selected solubilized fission yeast CENP-ACnp1 chromatin. All subunits of the Ino80 complex were enriched, including the auxiliary subunit Hap2. Chromatin association of Hap2 is Ies4-dependent. In addition to a role in maintenance of CENP-ACnp1 chromatin integrity at endogenous centromeres, Hap2 is required for de novo assembly of CENP-ACnp1 chromatin on naïve centromere DNA and promotes H3 turnover on centromere regions and other loci prone to CENP-ACnp1 deposition. Prior to CENP-ACnp1 chromatin assembly, Hap2 facilitates transcription from centromere DNA. These analyses suggest that Hap2-Ino80 destabilizes H3 nucleosomes on centromere DNA through transcription-coupled histone H3 turnover, driving the replacement of resident H3 nucleosomes with CENP-ACnp1 nucleosomes. These inherent properties define centromere DNA by directing a program that mediates CENP-ACnp1 assembly on appropriate sequences.


Asunto(s)
Cromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Transcripción Genética/fisiología , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , ADN de Hongos/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Factores de Transcripción/metabolismo
2.
Nature ; 585(7825): 453-458, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908306

RESUMEN

Heterochromatin that depends on histone H3 lysine 9 methylation (H3K9me) renders embedded genes transcriptionally silent1-3. In the fission yeast Schizosaccharomyces pombe, H3K9me heterochromatin can be transmitted through cell division provided the counteracting demethylase Epe1 is absent4,5. Heterochromatin heritability might allow wild-type cells under certain conditions to acquire epimutations, which could influence phenotype through unstable gene silencing rather than DNA change6,7. Here we show that heterochromatin-dependent epimutants resistant to caffeine arise in fission yeast grown with threshold levels of caffeine. Isolates with unstable resistance have distinct heterochromatin islands with reduced expression of embedded genes, including some whose mutation confers caffeine resistance. Forced heterochromatin formation at implicated loci confirms that resistance results from heterochromatin-mediated silencing. Our analyses reveal that epigenetic processes promote phenotypic plasticity, letting wild-type cells adapt to unfavourable environments without genetic alteration. In some isolates, subsequent or coincident gene-amplification events augment resistance. Caffeine affects two anti-silencing factors: Epe1 is downregulated, reducing its chromatin association, and a shortened isoform of Mst2 histone acetyltransferase is expressed. Thus, heterochromatin-dependent epimutation provides a bet-hedging strategy allowing cells to adapt transiently to insults while remaining genetically wild type. Isolates with unstable caffeine resistance show cross-resistance to antifungal agents, suggesting that related heterochromatin-dependent processes may contribute to resistance of plant and human fungal pathogens to such agents.


Asunto(s)
Farmacorresistencia Fúngica/genética , Silenciador del Gen , Heterocromatina/genética , Heterocromatina/metabolismo , Schizosaccharomyces/genética , Cafeína/farmacología , Farmacorresistencia Fúngica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Heterocromatina/efectos de los fármacos , Histona Acetiltransferasas/metabolismo , Proteínas Nucleares/metabolismo , Fenotipo , Schizosaccharomyces/citología , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
3.
Cell ; 140(5): 666-77, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20211136

RESUMEN

In fission yeast, RNAi directs heterochromatin formation at centromeres, telomeres, and the mating type locus. Noncoding RNAs transcribed from repeat elements generate siRNAs that are incorporated into the Argonaute-containing RITS complex and direct it to nascent homologous transcripts. This leads to recruitment of the CLRC complex, including the histone methyltransferase Clr4, promoting H3K9 methylation and heterochromatin formation. A key question is what mediates the recruitment of Clr4/CLRC to transcript-bound RITS. We have identified a LIM domain protein, Stc1, that is required for centromeric heterochromatin integrity. Our analyses show that Stc1 is specifically required to establish H3K9 methylation via RNAi, and interacts both with the RNAi effector Ago1, and with the chromatin-modifying CLRC complex. Moreover, tethering Stc1 to a euchromatic locus is sufficient to induce silencing and heterochromatin formation independently of RNAi. We conclude that Stc1 associates with RITS on centromeric transcripts and recruits CLRC, thereby coupling RNAi to chromatin modification.


Asunto(s)
Proteínas Portadoras/metabolismo , Ensamble y Desensamble de Cromatina , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/genética , N-Metiltransferasa de Histona-Lisina , Metiltransferasas/genética , Interferencia de ARN , Proteínas de Schizosaccharomyces pombe/genética
4.
PLoS Genet ; 8(2): e1002499, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22319459

RESUMEN

Non-coding transcription can trigger histone post-translational modifications forming specialized chromatin. In fission yeast, heterochromatin formation requires RNAi and the histone H3K9 methyltransferase complex CLRC, composed of Clr4, Raf1, Raf2, Cul4, and Rik1. CLRC mediates H3K9 methylation and siRNA production; it also displays E3-ubiquitin ligase activity in vitro. DCAFs act as substrate receptors for E3 ligases and may couple ubiquitination with histone methylation. Here, structural alignment and mutation of signature WDxR motifs in Raf1 indicate that it is a DCAF for CLRC. We demonstrate that Raf1 promotes H3K9 methylation and siRNA amplification via two distinct, separable functions. The association of the DCAF Raf1 with Cul4-Rik1 is critical for H3K9 methylation, but dispensable for processing of centromeric transcripts into siRNAs. Thus the association of a DCAF, Raf1, with its adaptor, Rik1, is required for histone methylation and to allow RNAi to signal to chromatin.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Histonas/genética , Proteínas Proto-Oncogénicas c-raf/genética , ARN Interferente Pequeño/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Ensamble y Desensamble de Cromatina , Heterocromatina/genética , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Metilación , Metiltransferasas/genética , Complejos Multiproteicos/genética , Mutación , Procesamiento Proteico-Postraduccional , Schizosaccharomyces/metabolismo , Homología Estructural de Proteína , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
5.
Nat Struct Mol Biol ; 29(8): 745-758, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35879419

RESUMEN

Epe1 histone demethylase restricts H3K9-methylation-dependent heterochromatin, preventing it from spreading over, and silencing, gene-containing regions in fission yeast. External stress induces an adaptive response allowing heterochromatin island formation that confers resistance on surviving wild-type lineages. Here we investigate the mechanism by which Epe1 is regulated in response to stress. Exposure to caffeine or antifungals results in Epe1 ubiquitylation and proteasome-dependent removal of the N-terminal 150 residues from Epe1, generating truncated Epe1 (tEpe1) which accumulates in the cytoplasm. Constitutive tEpe1 expression increases H3K9 methylation over several chromosomal regions, reducing expression of underlying genes and enhancing resistance. Reciprocally, constitutive non-cleavable Epe1 expression decreases resistance. tEpe1-mediated resistance requires a functional JmjC demethylase domain. Moreover, caffeine-induced Epe1-to-tEpe1 cleavage is dependent on an intact cell integrity MAP kinase stress signaling pathway, mutations in which alter resistance. Thus, environmental changes elicit a mechanism that curtails the function of this key epigenetic modifier, allowing heterochromatin to reprogram gene expression, thereby bestowing resistance to some cells within a population. H3K9me-heterochromatin components are conserved in human and crop-plant fungal pathogens for which a limited number of antifungals exist. Our findings reveal how transient heterochromatin-dependent antifungal resistant epimutations develop and thus inform on how they might be countered.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Antifúngicos/metabolismo , Cafeína/metabolismo , Citoplasma/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
6.
Curr Biol ; 17(14): 1219-24, 2007 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-17614284

RESUMEN

Centromeres exert vital cellular functions in mitosis and meiosis. A specialized histone and other chromatin-bound factors nucleate a dynamic protein assembly that is required for the proper segregation of sister chromatids. In several organisms, including the fission yeast, Schizosaccharomyces pombe, the RNAi pathway contributes to the formation of silent chromatin in pericentromeric regions. Little is known about how chromatin-remodeling factors contribute to heterochromatic integrity and centromere function. Here we show that the histone chaperone and remodeling complex FACT is required for centromeric-heterochromatin integrity and accurate chromosome segregation. We show that Spt16 and Pob3 are two subunits of the S. pombe FACT complex. Surprisingly, yeast strains deleted for pob3+ are viable and alleviate gene silencing at centromeric repeats and at the silent mating-type locus. Importantly, like heterochromatin and RNAi pathway mutants, Pob3 null strains exhibit lagging chromosomes on anaphase spindles. Whereas the processing of centromeric RNA transcripts into siRNAs is maintained in Pob3 mutants, Swi6-association with the centromere is reduced. Our studies provide the first experimental evidence for a role of the RNA polymerase II cofactor FACT in heterochromatin integrity and in centromere function.


Asunto(s)
Centrómero/metabolismo , Segregación Cromosómica/fisiología , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Regulación Fúngica de la Expresión Génica , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Interferencia de ARN , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
7.
Elife ; 92020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32915140

RESUMEN

During mitosis chromosomes reorganise into highly compact, rod-shaped forms, thought to consist of consecutive chromatin loops around a central protein scaffold. Condensin complexes are involved in chromatin compaction, but the contribution of other chromatin proteins, DNA sequence and histone modifications is less understood. A large region of fission yeast DNA inserted into a mouse chromosome was previously observed to adopt a mitotic organisation distinct from that of surrounding mouse DNA. Here, we show that a similar distinct structure is common to a large subset of insertion events in both mouse and human cells and is coincident with the presence of high levels of heterochromatic H3 lysine nine trimethylation (H3K9me3). Hi-C and microscopy indicate that the heterochromatinised fission yeast DNA is organised into smaller chromatin loops than flanking euchromatic mouse chromatin. We conclude that heterochromatin alters chromatin loop size, thus contributing to the distinct appearance of heterochromatin on mitotic chromosomes.


Asunto(s)
Cromosomas , Heterocromatina , Mitosis/genética , Animales , Cromosomas/química , Cromosomas/genética , Cromosomas/metabolismo , ADN de Hongos/química , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Recombinante/química , ADN Recombinante/genética , ADN Recombinante/metabolismo , Células HeLa , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/química , Histonas/genética , Histonas/metabolismo , Humanos , Ratones , Células 3T3 NIH , Schizosaccharomyces/genética , Transfección
8.
Wellcome Open Res ; 5: 274, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33313420

RESUMEN

The CRISPR/Cas9 system allows scarless, marker-free genome editing. Current CRISPR/Cas9 systems for the fission yeast  Schizosaccharomyces pombe rely on tedious and time-consuming cloning procedures to introduce a specific sgRNA target sequence into a Cas9-expressing plasmid. In addition, Cas9 endonuclease has been reported to be toxic to fission yeast when constitutively overexpressed from the strong  adh1 promoter. To overcome these problems we have developed an improved system,  SpEDIT, that uses a synthesised Cas9 sequence codon-optimised for  S. pombe expressed from the medium strength  adh15 promoter. The  SpEDIT system exhibits a flexible modular design where the sgRNA is fused to the 3' end of the self-cleaving hepatitis delta virus (HDV) ribozyme, allowing expression of the sgRNA cassette to be driven by RNA polymerase III from a tRNA gene sequence. Lastly, the inclusion of sites for the  BsaI type IIS restriction enzyme flanking a GFP placeholder enables one-step Golden Gate mediated replacement of GFP with synthesized sgRNAs for expression. The  SpEDIT system allowed a 100% mutagenesis efficiency to be achieved when generating targeted point mutants in the  ade6 +  or  ura4 + genes by transformation of cells from asynchronous cultures.  SpEDIT also permitted insertion, tagging and deletion events to be obtained with minimal effort. Simultaneous editing of two independent non-homologous loci was also readily achieved. Importantly the  SpEDIT system displayed reduced toxicity compared to currently available  S. pombe editing systems. Thus,  SpEDIT provides an effective and user-friendly CRISPR/Cas9 procedure that significantly improves the genome editing toolbox for fission yeast.

9.
Curr Top Microbiol Immunol ; 320: 157-83, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18268844

RESUMEN

In the fission yeast Schizosaccharomyces pombe, the RNAi pathway plays an important role in the formation and maintenance of heterochromatin. Heterochromatin, or silent chromatin, is an epigenetically inherited attribute of eukaryotic chromosomes which is required for gene regulation, chromosome segregation and maintenance of genome stability. In S. pombe, heterochromatin forms on related repetitive DNA sequences at specific loci. These repetitive sequences, in concert with the RNAi machinery, are thought to attract several proteins including chromatin-modifying enzymes which act to promote heterochromatin formation. The purification of complexes participating in heterochromatin formation has allowed us to begin to analyse in detail the processes involved. In the future this will help us to understand how the RNAi machinery acts to induce the chromatin modifications which lead to heterochromatin assembly in fission yeast.


Asunto(s)
Cromatina/química , Cromatina/genética , Interferencia de ARN , Schizosaccharomyces/genética , Centrómero/química , Centrómero/genética , Cromatina/metabolismo , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Metilación , Schizosaccharomyces/metabolismo , Telómero/genética
10.
Curr Biol ; 28(24): 3924-3936.e4, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30503616

RESUMEN

Active centromeres are defined by the presence of nucleosomes containing CENP-A, a histone H3 variant, which alone is sufficient to direct kinetochore assembly. Once assembled at a location, CENP-A chromatin and kinetochores are maintained at that location through a positive feedback loop where kinetochore proteins recruited by CENP-A promote deposition of new CENP-A following replication. Although CENP-A chromatin itself is a heritable entity, it is normally associated with specific sequences. Intrinsic properties of centromeric DNA may favor the assembly of CENP-A rather than H3 nucleosomes. Here we investigate histone dynamics on centromere DNA. We show that during S phase, histone H3 is deposited as a placeholder at fission yeast centromeres and is subsequently evicted in G2, when we detect deposition of the majority of new CENP-ACnp1. We also find that centromere DNA has an innate property of driving high rates of turnover of H3-containing nucleosomes, resulting in low nucleosome occupancy. When placed at an ectopic chromosomal location in the absence of any CENP-ACnp1 assembly, centromere DNA appears to retain its ability to impose S phase deposition and G2 eviction of H3, suggesting that features within centromere DNA program H3 dynamics. Because RNA polymerase II (RNAPII) occupancy on this centromere DNA coincides with H3 eviction in G2, we propose a model in which RNAPII-coupled chromatin remodeling promotes replacement of H3 with CENP-ACnp1 nucleosomes.


Asunto(s)
Centrómero/metabolismo , Proteínas Cromosómicas no Histona/genética , ADN de Hongos/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Proteínas Cromosómicas no Histona/metabolismo , Mitosis , Fase S , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
12.
Mol Cell Biol ; 35(4): 662-74, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25487573

RESUMEN

Heterochromatin underpins gene repression, genome integrity, and chromosome segregation. In the fission yeast Schizosaccharomyces pombe, conserved protein complexes effect heterochromatin formation via RNA interference-mediated recruitment of a histone H3 lysine 9 methyltransferase to cognate chromatin regions. To identify small molecules that inhibit heterochromatin formation, we performed an in vivo screen for loss of silencing of a dominant selectable kanMX reporter gene embedded within fission yeast centromeric heterochromatin. Two structurally unrelated compounds, HMS-I1 and HMS-I2, alleviated kanMX silencing and decreased repressive H3K9 methylation levels at the transgene. The decrease in methylation caused by HMS-I1 and HMS-I2 was observed at all loci regulated by histone methylation, including centromeric repeats, telomeric regions, and the mating-type locus, consistent with inhibition of the histone deacetylases (HDACs) Clr3 and/or Sir2. Chemical-genetic epistasis and expression profiles revealed that both compounds affect the activity of the Clr3-containing Snf2/HDAC repressor complex (SHREC). In vitro HDAC assays revealed that HMS-I1 and HMS-I2 inhibit Clr3 HDAC activity. HMS-I1 also alleviated transgene reporter silencing by heterochromatin in Arabidopsis and a mouse cell line, suggesting a conserved mechanism of action. HMS-I1 and HMS-I2 bear no resemblance to known inhibitors of chromatin-based activities and thus represent novel chemical probes for heterochromatin formation and function.


Asunto(s)
Dioxanos/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Heterocromatina/efectos de los fármacos , Compuestos Heterocíclicos con 2 Anillos/farmacología , Piperazinas/farmacología , Piridinas/farmacología , Schizosaccharomyces/efectos de los fármacos , Tiofenos/farmacología , Animales , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina , Metilación de ADN , Dioxanos/síntesis química , Dioxanos/química , Heterocromatina/química , Compuestos Heterocíclicos con 2 Anillos/síntesis química , Compuestos Heterocíclicos con 2 Anillos/química , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Histonas/metabolismo , Ratones , Piperazinas/síntesis química , Piperazinas/química , Piridinas/síntesis química , Piridinas/química , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/antagonistas & inhibidores , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Tiofenos/síntesis química , Tiofenos/química
13.
PLoS One ; 9(8): e104161, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25090107

RESUMEN

Centromeric heterochromatin assembly in fission yeast is critical for faithful chromosome segregation at mitosis. Its assembly requires a concerted pathway of events whereby the RNA interference (RNAi) pathway guides H3K9 methylation to target sequences. H3K9 methylation, a hallmark of heterochromatin structure, is mediated by the single histone methyltransferase Clr4 (equivalent to metazoan Suv3-9), a component of the CLRC complex. Loss of or defects in CLRC components disrupts heterochromatin formation due to loss of H3K9 methylation, thus an intact, fully functional CLRC complex is required for heterochromatin integrity. Despite its importance, little is known about the contribution of the CLRC component Raf2 to H3K9 methylation and heterochromatin assembly. We demonstrate that Raf2 is concentrated at centromeres and contrary to other analyses, we find that loss of Raf2 does not affect CENP-ACnp1 localisation or recruitment to centromeres. Our sequence alignments show that Raf2 contains a Replication Foci Targeting Sequence (RFTS) domain homologous to the RFTS domain of the human DNA methyltransferase DNMT1. We show that the Raf2 RFTS domain is required for centromeric heterochromatin formation as its mutation disrupts H3K9 methylation but not the processing of centromeric transcripts into small interfering RNAs (siRNAs) by the RNAi pathway. Analysis of biochemical interactions demonstrates that the RFTS domain mediates an interaction between Raf2 and the CLRC component Cul4. We conclude that the RFTS domain of Raf2 is a protein interaction module that plays an important role in heterochromatin formation at centromeres.


Asunto(s)
Proteínas Cullin/genética , Heterocromatina/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Centrómero/genética , Segregación Cromosómica/genética , Proteínas Cullin/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN/genética , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Mitosis/genética , Mutación Puntual , Estructura Terciaria de Proteína , ARN Interferente Pequeño , Proteínas de Schizosaccharomyces pombe/metabolismo , Alineación de Secuencia
14.
Genome Biol ; 15(10): 481, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25274039

RESUMEN

BACKGROUND: Heterochromatin plays important roles in the regulation and stability of eukaryotic genomes. Both heterochromatin components and pathways that promote heterochromatin assembly, including RNA interference, RNAi, are broadly conserved between the fission yeast Schizosaccharomyces pombe and humans. As a result, fission yeast has emerged as an important model system for dissecting mechanisms governing heterochromatin integrity. Thus far, over 50 proteins have been found to contribute to heterochromatin assembly at fission yeast centromeres. However, previous studies have not been exhaustive, and it is therefore likely that further factors remain to be identified. RESULTS: To gain a more complete understanding of heterochromatin assembly pathways, we have performed a systematic genetic screen for factors required for centromeric heterochromatin integrity. In addition to known RNAi and chromatin modification components, we identified several proteins with previously undescribed roles in heterochromatin regulation. These included both known and newly characterised splicing-associated proteins,which are required for proper processing of centromeric transcripts by the RNAi pathway, and COP9 signalosome components Csn1 and Csn2, whose role in heterochromatin assembly can be explained at least in part by a role in the Ddb1-dependent degradation of the heterochromatin regulator Epe1. CONCLUSIONS: This work has revealed new factors involved in RNAi-directed heterochromatin assembly in fission yeast. Our findings support and extend previous observations that implicate components of the splicing machinery as a platform for RNAi, and demonstrate a novel role for the COP9 signalosome in heterochromatin regulation.


Asunto(s)
Centrómero , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/genética , Regulación Fúngica de la Expresión Génica , Interferencia de ARN , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
15.
Cell ; 129(4): 651-3, 2007 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-17512398

RESUMEN

In fission yeast, RNA interference (RNAi)-dependent heterochromatin formation silences transgenes inserted at centromeres. In this issue, Bühler et al. (2007) demonstrate that the RNAi machinery directly targets transgene transcripts. Furthermore, they link transgene silencing to a protein complex resembling the TRAMP complex of budding yeast, which promotes transcript degradation via the exosome. Thus, RNAi-independent transcript degradation may also contribute to heterochromatin gene silencing.


Asunto(s)
Proteínas Fúngicas/genética , Interferencia de ARN/fisiología , Schizosaccharomyces/genética , Transcripción Genética/genética , Transgenes/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Heterocromatina/genética , Sustancias Macromoleculares/metabolismo , Polinucleotido Adenililtransferasa/genética , Polinucleotido Adenililtransferasa/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
16.
Chromosome Res ; 11(2): 137-46, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12733640

RESUMEN

In plants, animals and fungi, active centromeres are associated with arrays of repetitive DNA sequences. The outer repeats at fission yeast (Schizosaccharomyces pombe) centromeres are heterochromatic and are required for the assembly of an active centromere. Components of the RNA interference (RNAi) machinery process transcripts derived from these repeats and mediate the formation of silent chromatin. A subfragment of the repeat (dg) is known to induce silencing of marker genes at euchromatic sites and is required for centromere formation. We show that the RNAi components, Argonaute (Ago1), Dicer (Dcr1) and RNA-dependent RNA polymerase (Rdp1), are required to maintain silencing, lysine 9 methylation of histone H3 and association of Swi6 via this dg ectopic silencer. Deletion of Ago1, Dcr1 or Rdp1 disrupts chromosome segregation leading to a high incidence of lagging chromosomes on late anaphase spindles and sensitivity to a microtubule poison. Analysis of dg transcription indicates that csp mutants, previously shown to abrogate centromere silencing and chromosome segregation, are also defective in the regulation of non-coding centromeric RNAs. In addition, histone H3 lysine 9 methylation at, and recruitment of Swi6 and cohesin to, centromeric repeats is disrupted in these mutants. Thus the formation of silent chromatin on dg repeats and the development of a fully functional centromere is dependent on RNAi.


Asunto(s)
Centrómero/genética , Centrómero/fisiología , Interferencia de ARN , Schizosaccharomyces/genética , Proteínas Cromosómicas no Histona/química , Segregación Cromosómica , Metilación de ADN , Colorantes Fluorescentes , Perfilación de la Expresión Génica , Silenciador del Gen , Histonas/química , Indoles , Cinetocoros , Pruebas de Precipitina , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Schizosaccharomyces pombe/química , Secuencias Repetidas Terminales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA