RESUMEN
Introduction: Ependymomas (EPN) are the third most common malignant brain cancer in children. Treatment strategies for pediatric EPN have remained unchanged over recent decades, with 10-year survival rates stagnating at just 67% for children aged 0-14 years. Moreover, a proportion of patients who survive treatment often suffer long-term neurological side effects as a result of therapy. It is evident that there is a need for safer, more effective treatments for pediatric EPN patients. There are ten distinct subgroups of EPN, each with their own molecular and prognostic features. To identify and facilitate the testing of new treatments for EPN, in vivo laboratory models representative of the diverse molecular subtypes are required. Here, we describe the establishment of a patient-derived orthotopic xenograft (PDOX) model of posterior fossa A (PFA) EPN, derived from a metastatic cranial lesion. Methods: Patient and PDOX tumors were analyzed using immunohistochemistry, DNA methylation profiling, whole genome sequencing (WGS) and RNA sequencing. Results: Both patient and PDOX tumors classified as PFA EPN by methylation profiling, and shared similar histological features consistent with this molecular subgroup. RNA sequencing revealed that gene expression patterns were maintained across the primary and metastatic tumors, as well as the PDOX. Copy number profiling revealed gains of chromosomes 7, 8 and 19, and loss of chromosomes 2q and 6q in the PDOX and matched patient tumor. No clinically significant single nucleotide variants were identified, consistent with the low mutation rates observed in PFA EPN. Overexpression of EZHIP RNA and protein, a common feature of PFA EPN, was also observed. Despite the aggressive nature of the tumor in the patient, this PDOX was unable to be maintained past two passages in vivo. Discussion: Others who have successfully developed PDOX models report some of the lowest success rates for EPN compared to other pediatric brain cancer types attempted, with loss of tumorigenicity not uncommon, highlighting the challenges of propagating these tumors in the laboratory. Here, we discuss our collective experiences with PFA EPN PDOX model generation and propose potential approaches to improve future success in establishing preclinical EPN models.
RESUMEN
BACKGROUND: Cranial radiation therapy is essential in treating many pediatric cancers, especially brain tumors; however, its use comes with the risk of developing second malignancies. Cranial radiation-induced gliomas (RIGs) are aggressive high-grade tumors with a dismal prognosis, for which no standard therapy exists. A definitive molecular signature for RIGs has not yet been established. We sought to address this gap by performing a systematic review and meta-analysis of the molecular features of cranial RIGs. METHODS: A systematic review of the literature was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Articles and case reports that described molecular analyses of cranial radiation-induced high-grade gliomas were identified and evaluated, and data extracted for collation. RESULTS: Of 1727 records identified, 31 were eligible, containing 102 unique RIGs with molecular data. The most frequent genetic alterations in RIGs included PDGFRA or TP53 mutations, PDGFRA or CDK4 amplifications, and CDKN2A deletion, along with 1q gain, 1p loss and 13q loss. Of note, mutations in ACVR1, EGFR, H3F3A, HIST1H3B, HIST1H3C, IDH2, SMARCB1 or the TERT promoter were not observed. A comparative analysis revealed that RIGs are molecularly distinct from most other astrocytomas and gliomas and instead align most closely with the pedGBM_RTK1 subgroup of pediatric glioblastoma. CONCLUSIONS: This comprehensive analysis highlights the major molecular features of RIGs, demonstrates their molecular distinction from many other astrocytomas and gliomas, and reveals potential genetic drivers and therapeutic targets for this currently fatal disease.
RESUMEN
Medulloblastoma is the most common malignant childhood brain tumor, and 5-year overall survival rates are as low as 40% depending on molecular subtype, with new therapies critically important. As radiotherapy and chemotherapy act through the induction of DNA damage, the sensitization of cancer cells through the inhibition of DNA damage repair pathways is a potential therapeutic strategy. The poly-(ADP-ribose) polymerase (PARP) inhibitor veliparib was assessed for its ability to augment the cellular response to radiation-induced DNA damage in human medulloblastoma cells. DNA repair following irradiation was assessed using the alkaline comet assay, with veliparib inhibiting the rate of DNA repair. Veliparib treatment also increased the number of γH2AX foci in cells treated with radiation, and analysis of downstream pathways indicated persistent activation of the DNA damage response pathway. Clonogenicity assays demonstrated that veliparib effectively inhibited the colony-forming capacity of medulloblastoma cells, both as a single agent and in combination with irradiation. These data were then validated in vivo using an orthotopic implant model of medulloblastoma. Mice harboring intracranial D425 medulloblastoma xenografts were treated with vehicle, veliparib, 18 Gy multifractionated craniospinal irradiation (CSI), or veliparib combined with 18 Gy CSI. Animals treated with combination therapy exhibited reduced tumor growth rates concomitant with increased intra-tumoral apoptosis observed by immunohistochemistry. Kaplan-Meier analyses revealed a statistically significant increase in survival with combination therapy compared to CSI alone. In summary, PARP inhibition enhanced radiation-induced cytotoxicity of medulloblastoma cells; thus, veliparib or other brain-penetrant PARP inhibitors are potential radiosensitizing agents for the treatment of medulloblastoma.
RESUMEN
Medulloblastoma (MB) consists of four core molecular subgroups with distinct clinical features and prognoses. Treatment consists of surgery, followed by radiotherapy and cytotoxic chemotherapy. Despite this intensive approach, outcome remains dismal for patients with certain subtypes of MB, namely, MYC-amplified Group 3 and TP53-mutated SHH. Using high-throughput assays, six human MB cell lines were screened against a library of 3208 unique compounds. We identified 45 effective compounds from the screen and found that cell cycle checkpoint kinase (CHK1/2) inhibition synergistically enhanced the cytotoxic activity of clinically used chemotherapeutics cyclophosphamide, cisplatin, and gemcitabine. To identify the best-in-class inhibitor, multiple CHK1/2 inhibitors were assessed in mice bearing intracranial MB. When combined with DNA-damaging chemotherapeutics, CHK1/2 inhibition reduced tumor burden and increased survival of animals with high-risk MB, across multiple different models. In total, we tested 14 different models, representing distinct MB subgroups, and data were validated in three independent laboratories. Pharmacodynamics studies confirmed central nervous system penetration. In mice, combination treatment significantly increased DNA damage and apoptosis compared to chemotherapy alone, and studies with cultured cells showed that CHK inhibition disrupted chemotherapy-induced cell cycle arrest. Our findings indicated CHK1/2 inhibition, specifically with LY2606368 (prexasertib), has strong chemosensitizing activity in MB that warrants further clinical investigation. Moreover, these data demonstrated that we developed a robust and collaborative preclinical assessment platform that can be used to identify potentially effective new therapies for clinical evaluation for pediatric MB.
Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Animales , Ciclo Celular , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , ADN , Humanos , Meduloblastoma/tratamiento farmacológico , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéuticoRESUMEN
Radiation-induced glioma (RIG) is a highly aggressive brain cancer arising as a consequence of radiation therapy. We report a case of RIG that arose in the brain stem following treatment for paediatric medulloblastoma, and the development and characterisation of a matched orthotopic patient-derived xenograft (PDX) model (TK-RIG915). Patient and PDX tumours were analysed using DNA methylation profiling, whole genome sequencing (WGS) and RNA sequencing. While initially thought to be a diffuse intrinsic pontine glioma (DIPG) based on disease location, results from methylation profiling and WGS were not consistent with this diagnosis. Furthermore, clustering analyses based on RNA expression suggested the tumours were distinct from primary DIPG. Additional gene expression analysis demonstrated concordance with a published RIG expression profile. Multiple genetic alterations that enhance PI3K/AKT and Ras/Raf/MEK/ERK signalling were discovered in TK-RIG915 including an activating mutation in PIK3CA, upregulation of PDGFRA and AKT2, inactivating mutations in NF1, and a gain-of-function mutation in PTPN11. Additionally, deletion of CDKN2A/B, increased IDH1 expression, and decreased ARID1A expression were observed. Detection of phosphorylated S6, 4EBP1 and ERK via immunohistochemistry confirmed PI3K pathway and ERK activation. Here, we report one of the first PDX models for RIG, which recapitulates the patient disease and is molecularly distinct from primary brain stem glioma. Genetic interrogation of this model has enabled the identification of potential therapeutic vulnerabilities in this currently incurable disease.
RESUMEN
Glioblastoma in adults, and medulloblastoma and pineoblastoma that mainly affect children, are aggressive brain tumors. The survival for patients with glioblastoma remains dismal. While the cure rate for medulloblastoma exceeds 70%, this figure has stagnated over the past few decades and survivors still contend with significant long-term debilitating side effects. The prognosis for pineoblastoma is age-dependent, with little chance of a cure for children younger than three years. More effective molecularly targeted strategies are urgently required to treat these cancers. Hyper-activation of epidermal growth factor receptor (EGFR) signaling is characteristic of several different classes of human cancers, including a subset of glioblastoma and medulloblastoma. This has provided the impetus for the development of a suite of EGFR pathway blockers, including second generation irreversible inhibitors, such as dacomitinib. We have developed a comprehensive drug evaluation pipeline, including in vitro interaction analyses and orthotopic xenograft mouse models, to address the efficacy of drugs for brain tumor treatment, enabling the exclusion of potentially ineffective treatments and prioritization of truly beneficial novel treatments for clinical trial. We used this system to examine the effects of dacomitinib as a single agent, or in combination with conventional chemotherapeutics, on the growth of human adult and pediatric brain tumor cell lines. Dacomitinib inhibited EGFR or EGFRvIII activity in vitro in all three tumor types tested, and as a single agent induced a modest increase in survival time for mice bearing glioblastoma, which accurately predicted human clinical trial data. For pediatric medulloblastoma, dacomitinib blocked EGFR/HER signalling in orthotopic xenografts and extended median survival as a single agent, however was antagonistic when used in combination with standard frontline medulloblastoma chemotherapies. The findings caution against the use of dacomitinib for pediatric brain tumor clinical trials.