Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(3): 545-562.e23, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32621799

RESUMEN

Scar tissue size following myocardial infarction is an independent predictor of cardiovascular outcomes, yet little is known about factors regulating scar size. We demonstrate that collagen V, a minor constituent of heart scars, regulates the size of heart scars after ischemic injury. Depletion of collagen V led to a paradoxical increase in post-infarction scar size with worsening of heart function. A systems genetics approach across 100 in-bred strains of mice demonstrated that collagen V is a critical driver of postinjury heart function. We show that collagen V deficiency alters the mechanical properties of scar tissue, and altered reciprocal feedback between matrix and cells induces expression of mechanosensitive integrins that drive fibroblast activation and increase scar size. Cilengitide, an inhibitor of specific integrins, rescues the phenotype of increased post-injury scarring in collagen-V-deficient mice. These observations demonstrate that collagen V regulates scar size in an integrin-dependent manner.


Asunto(s)
Cicatriz/metabolismo , Colágeno Tipo V/deficiencia , Colágeno Tipo V/metabolismo , Lesiones Cardíacas/metabolismo , Contracción Miocárdica/genética , Miofibroblastos/metabolismo , Animales , Cicatriz/genética , Cicatriz/fisiopatología , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Colágeno Tipo V/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Femenino , Fibrosis/genética , Fibrosis/metabolismo , Regulación de la Expresión Génica/genética , Integrinas/antagonistas & inhibidores , Integrinas/genética , Integrinas/metabolismo , Isoproterenol/farmacología , Masculino , Mecanotransducción Celular/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía de Fuerza Atómica/instrumentación , Microscopía Electrónica de Transmisión , Contracción Miocárdica/efectos de los fármacos , Miofibroblastos/citología , Miofibroblastos/patología , Miofibroblastos/ultraestructura , Análisis de Componente Principal , Proteómica , RNA-Seq , Análisis de la Célula Individual
2.
Nature ; 613(7942): 160-168, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36477540

RESUMEN

Multilocular adipocytes are a hallmark of thermogenic adipose tissue1,2, but the factors that enforce this cellular phenotype are largely unknown. Here, we show that an adipocyte-selective product of the Clstn3 locus (CLSTN3ß) present in only placental mammals facilitates the efficient use of stored triglyceride by limiting lipid droplet (LD) expansion. CLSTN3ß is an integral endoplasmic reticulum (ER) membrane protein that localizes to ER-LD contact sites through a conserved hairpin-like domain. Mice lacking CLSTN3ß have abnormal LD morphology and altered substrate use in brown adipose tissue, and are more susceptible to cold-induced hypothermia despite having no defect in adrenergic signalling. Conversely, forced expression of CLSTN3ß is sufficient to enforce a multilocular LD phenotype in cultured cells and adipose tissue. CLSTN3ß associates with cell death-inducing DFFA-like effector proteins and impairs their ability to transfer lipid between LDs, thereby restricting LD fusion and expansion. Functionally, increased LD surface area in CLSTN3ß-expressing adipocytes promotes engagement of the lipolytic machinery and facilitates fatty acid oxidation. In human fat, CLSTN3B is a selective marker of multilocular adipocytes. These findings define a molecular mechanism that regulates LD form and function to facilitate lipid utilization in thermogenic adipocytes.


Asunto(s)
Adipocitos , Proteínas de Unión al Calcio , Metabolismo de los Lípidos , Proteínas de la Membrana , Animales , Femenino , Humanos , Ratones , Adipocitos/citología , Adipocitos/metabolismo , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Placenta , Triglicéridos/metabolismo , Retículo Endoplásmico/metabolismo , Gotas Lipídicas/metabolismo , Ácidos Grasos/metabolismo , Hipotermia/metabolismo , Termogénesis
3.
FASEB J ; 37(8): e23068, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37436778

RESUMEN

In sporadic amyotrophic lateral sclerosis (sALS), IL-17A- and granzyme-positive cytotoxic T lymphocytes (CTL), IL-17A-positive mast cells, and inflammatory macrophages invade the brain and spinal cord. In some patients, the disease starts following a trauma or a severe infection. We examined cytokines and cytokine regulators over the disease course and found that, since the early stages, peripheral blood mononuclear cells (PBMC) exhibit increased expression of inflammatory cytokines IL-12A, IFN-γ, and TNF-α, as well as granzymes and the transcription factors STAT3 and STAT4. In later stages, PBMCs upregulated the autoimmunity-associated cytokines IL-23A and IL-17B, and the chemokines CXCL9 and CXCL10, which attract CTL and monocytes into the central nervous system. The inflammation is fueled by the downregulation of IL-10, TGFß, and the inhibitory T-cell co-receptors CTLA4, LAG3, and PD-1, and, in vitro, by stimulation with the ligand PD-L1. We investigated in two sALS patients the regulation of the macrophage transcriptome by dimethyl fumarate (DMF), a drug approved against multiple sclerosis and psoriasis, and the cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway inhibitor H-151. Both DMF and H-151 downregulated the expression of granzymes and the pro-inflammatory cytokines IL-1ß, IL-6, IL-15, IL-23A, and IFN-γ, and induced a pro-resolution macrophage phenotype. The eicosanoid epoxyeicosatrienoic acids (EET) from arachidonic acid was anti-inflammatory in synergy with DMF. H-151 and DMF are thus candidate drugs targeting the inflammation and autoimmunity in sALS via modulation of the NFκB and cGAS/STING pathways.


Asunto(s)
Esclerosis Amiotrófica Lateral , Citocinas , Humanos , Citocinas/metabolismo , Interleucina-17 , Dimetilfumarato , Leucocitos Mononucleares/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Granzimas , Inflamación/tratamiento farmacológico , Nucleotidiltransferasas
4.
Appl Magn Reson ; 55(1-3): 251-277, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38357006

RESUMEN

Site-directed spin labeling electron paramagnetic resonance (SDSL-EPR) is an established tool for exploring protein structure and dynamics. Although nitroxide side chains attached to a single cysteine via a disulfide linkage are commonly employed in SDSL-EPR, their internal flexibility complicates applications to monitor slow internal motions in proteins and to structure determination by distance mapping. Moreover, the labile disulfide linkage prohibits the use of reducing agents often needed for protein stability. To enable the application of SDSL-EPR to the measurement of slow internal dynamics, new spin labels with hindered internal motion are desired. Here, we introduce a highly ordered nitroxide side chain, designated R9, attached at a single cysteine residue via a non-reducible thioether linkage. The reaction to introduce R9 is highly selective for solvent-exposed cysteine residues. Structures of R9 at two helical sites in T4 Lysozyme were determined by X-ray crystallography and the mobility in helical sequences was characterized by EPR spectral lineshape analysis, Saturation Transfer EPR, and Saturation Recovery EPR. In addition, interspin distance measurements between pairs of R9 residues are reported. Collectively, all data indicate that R9 will be useful for monitoring slow internal structural fluctuations, and applications to distance mapping via dipolar spectroscopy and relaxation enhancement methods are anticipated. Supplementary Information: The online version contains supplementary material available at 10.1007/s00723-023-01618-8.

5.
J Biol Chem ; 296: 100676, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33865857

RESUMEN

Human cell division is a highly regulated process that relies on the accurate capture and movement of chromosomes to the metaphase plate. Errors in the fidelity of chromosome congression and alignment can lead to improper chromosome segregation, which is correlated with aneuploidy and tumorigenesis. These processes are known to be regulated by extracellular signal-regulated kinase 2 (ERK2) in other species, but the role of ERK2 in mitosis in mammals remains unclear. Here, we have identified the dual-specificity phosphatase 7 (DUSP7), known to display selectivity for ERK2, as important in regulating chromosome alignment. During mitosis, DUSP7 bound to ERK2 and regulated the abundance of active phospho-ERK2 through its phosphatase activity. Overexpression of DUSP7, but not catalytically inactive mutants, led to a decrease in the levels of phospho-ERK2 and mitotic chromosome misalignment, while knockdown of DUSP7 also led to defective chromosome congression that resulted in a prolonged mitosis. Consistently, knockdown or chemical inhibition of ERK2 or chemical inhibition of the MEK kinase that phosphorylates ERK2 led to chromosome alignment defects. Our results support a model wherein MEK-mediated phosphorylation and DUSP7-mediated dephosphorylation regulate the levels of active phospho-ERK2 to promote proper cell division.


Asunto(s)
Cromosomas Humanos/metabolismo , Fosfatasas de Especificidad Dual/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Mitosis , Cromosomas Humanos/genética , Fosfatasas de Especificidad Dual/genética , Células HCT116 , Células HeLa , Humanos , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Mutación , Fosforilación/genética
6.
Nat Methods ; 16(7): 587-594, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31249407

RESUMEN

One gene can give rise to many functionally distinct proteoforms, each of which has a characteristic molecular mass. Top-down mass spectrometry enables the analysis of intact proteins and proteoforms. Here members of the Consortium for Top-Down Proteomics provide a decision tree that guides researchers to robust protocols for mass analysis of intact proteins (antibodies, membrane proteins and others) from mixtures of varying complexity. We also present cross-platform analytical benchmarks using a protein standard sample, to allow users to gauge their proficiency.


Asunto(s)
Benchmarking , Espectrometría de Masas/métodos , Proteínas/química , Desnaturalización Proteica , Procesamiento Proteico-Postraduccional , Proteómica
7.
Photosynth Res ; 152(3): 305-316, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34910272

RESUMEN

The assembly of large, multi-cofactor membrane protein complexes like photosystem II (PSII) requires a high level of coordination. The process is facilitated by a large network of auxiliary proteins that bind transiently to unassembled subunits, preassembled modules or intermediate states of PSII, which are comprised of a subset of subunits. However, analysis of these immature, partially assembled PSII complexes is hampered by their low abundance and intrinsic instability. In this study, PSII was purified from the thermophilic cyanobacterium Thermosynechococcus elongatus via Twin-Strep-tagged CP43 and further separated by ion exchange chromatography into mature and immature complexes. Mass spectrometry analysis of the immature Psb27-PSII intermediate revealed six different Psb27 proteoforms with distinct lipid modifications. The maturation and functional role of thylakoid localized lipoproteins are discussed.


Asunto(s)
Cianobacterias , Complejo de Proteína del Fotosistema II , Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Lípidos , Espectrometría de Masas , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo
8.
Nature ; 534(7605): 124-8, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27251289

RESUMEN

Liver X receptors (LXRs) are transcriptional regulators of cellular and systemic cholesterol homeostasis. Under conditions of excess cholesterol, LXR activation induces the expression of several genes involved in cholesterol efflux, facilitates cholesterol esterification by promoting fatty acid synthesis, and inhibits cholesterol uptake by the low-density lipoprotein receptor. The fact that sterol content is maintained in a narrow range in most cell types and in the organism as a whole suggests that extensive crosstalk between regulatory pathways must exist. However, the molecular mechanisms that integrate LXRs with other lipid metabolic pathways are incompletely understood. Here we show that ligand activation of LXRs in mouse liver not only promotes cholesterol efflux, but also simultaneously inhibits cholesterol biosynthesis. We further identify the long non-coding RNA LeXis as a mediator of this effect. Hepatic LeXis expression is robustly induced in response to a Western diet (high in fat and cholesterol) or to pharmacological LXR activation. Raising or lowering LeXis levels in the liver affects the expression of genes involved in cholesterol biosynthesis and alters the cholesterol levels in the liver and plasma. LeXis interacts with and affects the DNA interactions of RALY, a heterogeneous ribonucleoprotein that acts as a transcriptional cofactor for cholesterol biosynthetic genes in the mouse liver. These findings outline a regulatory role for a non-coding RNA in lipid metabolism and advance our understanding of the mechanisms that coordinate sterol homeostasis.


Asunto(s)
Colesterol/metabolismo , Homeostasis/genética , Metabolismo de los Lípidos/genética , Receptores Nucleares Huérfanos/metabolismo , ARN Largo no Codificante/genética , Animales , Colesterol/biosíntesis , Colesterol/sangre , Dieta Occidental , Grasas de la Dieta/farmacología , Regulación de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Homeostasis/efectos de los fármacos , Ligandos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Receptores X del Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Nucleares Huérfanos/agonistas , ARN Largo no Codificante/biosíntesis , Transducción de Señal , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo
9.
Proc Natl Acad Sci U S A ; 116(22): 10744-10748, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31097579

RESUMEN

Insulin therapy in the setting of type 1 and advanced type 2 diabetes is complicated by increased risk of hypoglycemia. This potentially fatal complication could be mitigated by a glucose-responsive insulin analog. We report an insulin-facilitated glucose transporter (Glut) inhibitor conjugate, in which the insulin molecule is rendered glucose-responsive via conjugation to an inhibitor of Glut. The binding affinity of this insulin analog to endogenous Glut is modulated by plasma and tissue glucose levels. In hyperglycemic conditions (e.g., uncontrolled diabetes or the postprandial state), the in situ-generated insulin analog-Glut complex is driven to dissociate, freeing the insulin analog and glucose-accessible Glut to restore normoglycemia. Upon overdose, enhanced binding of insulin analog to Glut suppresses the glucose transport activity of Glut to attenuate further uptake of glucose. We demonstrate the ability of this insulin conjugate to regulate blood glucose levels within a normal range while mitigating the risk of hypoglycemia in a type 1 diabetic mouse model.


Asunto(s)
Glucemia/efectos de los fármacos , Proteínas Facilitadoras del Transporte de la Glucosa/antagonistas & inhibidores , Hipoglucemia/prevención & control , Hipoglucemiantes , Insulina , Animales , Glucemia/análisis , Diabetes Mellitus Experimental , Sistemas de Liberación de Medicamentos/métodos , Hiperglucemia/tratamiento farmacológico , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Insulina/análogos & derivados , Insulina/química , Insulina/farmacología , Ratones
10.
Int J Mol Sci ; 23(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35563647

RESUMEN

Fatigue and other deleterious mood alterations resulting from prolonged efforts such as a long work shift can lead to a decrease in vigilance and cognitive performance, increasing the likelihood of errors during the execution of attention-demanding activities such as piloting an aircraft or performing medical procedures. Thus, a method to rapidly and objectively assess the risk for such cognitive fatigue would be of value. The objective of the study was the identification in saliva-borne exosomes of molecular signals associated with changes in mood and fatigue that may increase the risk of reduced cognitive performance. Using integrated multiomics analysis of exosomes from the saliva of medical residents before and after a 12 h work shift, we observed changes in the abundances of several proteins and miRNAs that were associated with various mood states, and specifically fatigue, as determined by a Profile of Mood States questionnaire. The findings herein point to a promising protein biomarker, phosphoglycerate kinase 1 (PGK1), that was associated with fatigue and displayed changes in abundance in saliva, and we suggest a possible biological mechanism whereby the expression of the PGK1 gene is regulated by miR3185 in response to fatigue. Overall, these data suggest that multiomics analysis of salivary exosomes has merit for identifying novel biomarkers associated with changes in mood states and fatigue. The promising biomarker protein presents an opportunity for the development of a rapid saliva-based test for the assessment of these changes.


Asunto(s)
Exosomas , MicroARNs , Biomarcadores/metabolismo , Exosomas/genética , Exosomas/metabolismo , MicroARNs/metabolismo , Saliva/metabolismo
11.
J Proteome Res ; 20(7): 3414-3427, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34087075

RESUMEN

The spindle assembly checkpoint (SAC) is critical for sensing defective microtubule-kinetochore attachments and tension across the kinetochore and functions to arrest cells in prometaphase to allow time to repair any errors before proceeding into anaphase. Dysregulation of the SAC leads to chromosome segregation errors that have been linked to human diseases like cancer. Although much has been learned about the composition of the SAC and the factors that regulate its activity, the proximity associations of core SAC components have not been explored in a systematic manner. Here, we have taken a BioID2-proximity-labeling proteomic approach to define the proximity protein environment for each of the five core SAC proteins BUB1, BUB3, BUBR1, MAD1L1, and MAD2L1 in mitotic-enriched populations of cells where the SAC is active. These five protein association maps were integrated to generate a SAC proximity protein network that contains multiple layers of information related to core SAC protein complexes, protein-protein interactions, and proximity associations. Our analysis validated many known SAC complexes and protein-protein interactions. Additionally, it uncovered new protein associations, including the ELYS-MAD1L1 interaction that we have validated, which lend insight into the functioning of core SAC proteins and highlight future areas of investigation to better understand the SAC.


Asunto(s)
Puntos de Control de la Fase M del Ciclo Celular , Huso Acromático , Proteínas de Ciclo Celular/genética , Humanos , Cinetocoros , Proteínas Serina-Treonina Quinasas/genética , Proteómica
12.
Nature ; 525(7570): 486-90, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26352473

RESUMEN

The protein α-synuclein is the main component of Lewy bodies, the neuron-associated aggregates seen in Parkinson disease and other neurodegenerative pathologies. An 11-residue segment, which we term NACore, appears to be responsible for amyloid formation and cytotoxicity of human α-synuclein. Here we describe crystals of NACore that have dimensions smaller than the wavelength of visible light and thus are invisible by optical microscopy. As the crystals are thousands of times too small for structure determination by synchrotron X-ray diffraction, we use micro-electron diffraction to determine the structure at atomic resolution. The 1.4 Å resolution structure demonstrates that this method can determine previously unknown protein structures and here yields, to our knowledge, the highest resolution achieved by any cryo-electron microscopy method to date. The structure exhibits protofibrils built of pairs of face-to-face ß-sheets. X-ray fibre diffraction patterns show the similarity of NACore to toxic fibrils of full-length α-synuclein. The NACore structure, together with that of a second segment, inspires a model for most of the ordered portion of the toxic, full-length α-synuclein fibril, presenting opportunities for the design of inhibitors of α-synuclein fibrils.


Asunto(s)
Nanopartículas/química , Nanopartículas/toxicidad , alfa-Sinucleína/química , alfa-Sinucleína/toxicidad , Amiloide/química , Microscopía por Crioelectrón , Electrones , Humanos , Cuerpos de Lewy/química , Modelos Moleculares , Enfermedad de Parkinson , Estructura Terciaria de Proteína , Dispersión de Radiación
13.
Proc Natl Acad Sci U S A ; 115(29): E6741-E6750, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29954863

RESUMEN

Each of the 30 human amyloid diseases is associated with the aggregation of a particular precursor protein into amyloid fibrils. In transthyretin amyloidosis (ATTR), mutant or wild-type forms of the serum carrier protein transthyretin (TTR), synthesized and secreted by the liver, convert to amyloid fibrils deposited in the heart and other organs. The current standard of care for hereditary ATTR is liver transplantation, which replaces the mutant TTR gene with the wild-type gene. However, the procedure is often followed by cardiac deposition of wild-type TTR secreted by the new liver. Here we find that amyloid fibrils extracted from autopsied and explanted hearts of ATTR patients robustly seed wild-type TTR into amyloid fibrils in vitro. Cardiac-derived ATTR seeds can accelerate fibril formation of wild-type and monomeric TTR at acidic pH and under physiological conditions, respectively. We show that this seeding is inhibited by peptides designed to complement structures of TTR fibrils. These inhibitors cap fibril growth, suggesting an approach for halting progression of ATTR.


Asunto(s)
Amiloide/química , Miocardio/química , Prealbúmina/química , Amiloide/metabolismo , Neuropatías Amiloides Familiares/metabolismo , Neuropatías Amiloides Familiares/patología , Femenino , Humanos , Concentración de Iones de Hidrógeno , Masculino , Miocardio/metabolismo , Miocardio/patología , Prealbúmina/metabolismo
14.
Int J Mol Sci ; 22(7)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918522

RESUMEN

Photochemical energy conversion during oxygenic photosynthesis is performed by membrane-embedded chlorophyll-binding protein complexes. The biogenesis and maintenance of these complexes requires auxiliary protein factors that optimize the assembly process and protect nascent complexes from photodamage. In cyanobacteria, several lipoproteins contribute to the biogenesis and function of the photosystem II (PSII) complex. They include CyanoP, CyanoQ, and Psb27, which are all attached to the lumenal side of PSII complexes. Here, we show that the lumenal Ycf48 assembly factor found in the cyanobacterium Synechocystis sp. PCC 6803 is also a lipoprotein. Detailed mass spectrometric analysis of the isolated protein supported by site-directed mutagenesis experiments indicates lipidation of the N-terminal C29 residue of Ycf48 and removal of three amino acids from the C-terminus. The lipobox sequence in Ycf48 contains a cysteine residue at the -3 position compared to Leu/Val/Ile residues found in the canonical lipobox sequence. The atypical Ycf48 lipobox sequence is present in most cyanobacteria but is absent in eukaryotes. A possible role for lipoproteins in the coordinated assembly of cyanobacterial PSII is discussed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Metabolismo de los Lípidos , Complejo de Proteína del Fotosistema II/metabolismo , Synechocystis/metabolismo
15.
Biochemistry ; 59(32): 2916-2921, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32786404

RESUMEN

Somatic mutations that perturb Parkin ubiquitin ligase activity and the misregulation of iron homeostasis have both been linked to Parkinson's disease. Lactotransferrin (LTF) is a member of the family of transferrin iron binding proteins that regulate iron homeostasis, and increased levels of LTF and its receptor have been observed in neurodegenerative disorders like Parkinson's disease. Here, we report that Parkin binds to LTF and ubiquitylates LTF to influence iron homeostasis. Parkin-dependent ubiquitylation of LTF occurred most often on lysines (K) 182 and 649. Substitution of K182 or K649 with alanine (K182A or K649A, respectively) led to a decrease in the level of LTF ubiquitylation, and substitution at both sites led to a major decrease in the level of LTF ubiquitylation. Importantly, Parkin-mediated ubiquitylation of LTF was critical for regulating intracellular iron levels as overexpression of LTF ubiquitylation site point mutants (K649A or K182A/K649A) led to an increase in intracellular iron levels measured by ICP-MS/MS. Consistently, RNAi-mediated depletion of Parkin led to an increase in intracellular iron levels in contrast to overexpression of Parkin that led to a decrease in intracellular iron levels. Together, these results indicate that Parkin binds to and ubiquitylates LTF to regulate intracellular iron levels. These results expand our understanding of the cellular processes that are perturbed when Parkin activity is disrupted and more broadly the mechanisms that contribute to Parkinson's disease.


Asunto(s)
Homeostasis , Hierro/metabolismo , Lactoferrina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Sitios de Unión , Células HEK293 , Humanos , Lactoferrina/química , Modelos Moleculares , Conformación Proteica
16.
Am J Physiol Gastrointest Liver Physiol ; 318(5): G931-G945, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32174134

RESUMEN

Helicobacter pylori infection always induces gastritis, which may progress to ulcer disease or cancer. The mechanisms underlying mucosal injury by the bacteria are incompletely understood. Here, we identify a novel pathway for H. pylori-induced gastric injury, the impairment of maturation of the essential transport enzyme and cell adhesion molecule, Na-K-ATPase. Na-K-ATPase comprises α- and ß-subunits that assemble in the endoplasmic reticulum (ER) before trafficking to the plasma membrane. Attachment of H. pylori to gastric epithelial cells increased Na-K-ATPase ubiquitylation, decreased its surface and total levels, and impaired ion balance. H. pylori did not alter degradation of plasmalemma-resident Na-K-ATPase subunits or their mRNA levels. Infection decreased association of α- and ß-subunits with ER chaperone BiP and impaired assembly of α/ß-heterodimers, as was revealed by quantitative mass spectrometry and immunoblotting of immunoprecipitated complexes. The total level of BiP was not altered, and the decrease in interaction with BiP was not observed for other BiP client proteins. The H. pylori-induced decrease in Na-K-ATPase was prevented by BiP overexpression, stopping protein synthesis, or inhibiting proteasomal, but not lysosomal, protein degradation. The results indicate that H. pylori impairs chaperone-assisted maturation of newly made Na-K-ATPase subunits in the ER independently of a generalized ER stress and induces their ubiquitylation and proteasomal degradation. The decrease in Na-K-ATPase levels is also seen in vivo in the stomachs of gerbils and chronically infected children. Further understanding of H. pylori-induced Na-K-ATPase degradation will provide insights for protection against advanced disease.NEW & NOTEWORTHY This work provides evidence that Helicobacter pylori decreases levels of Na-K-ATPase, a vital transport enzyme, in gastric epithelia, both in acutely infected cultured cells and in chronically infected patients and animals. The bacteria interfere with BiP-assisted folding of newly-made Na-K-ATPase subunits in the endoplasmic reticulum, accelerating their ubiquitylation and proteasomal degradation and decreasing efficiency of the assembly of native enzyme. Decreased Na-K-ATPase expression contributes to H. pylori-induced gastric injury.


Asunto(s)
Retículo Endoplásmico/enzimología , Células Epiteliales/enzimología , Mucosa Gástrica/enzimología , Gastritis/enzimología , Proteínas de Choque Térmico/metabolismo , Infecciones por Helicobacter/enzimología , Helicobacter pylori/patogenicidad , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Células Cultivadas , Retículo Endoplásmico/microbiología , Chaperón BiP del Retículo Endoplásmico , Estabilidad de Enzimas , Células Epiteliales/microbiología , Mucosa Gástrica/microbiología , Gastritis/genética , Gastritis/microbiología , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/microbiología , Interacciones Huésped-Patógeno , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína , Proteolisis , ATPasa Intercambiadora de Sodio-Potasio/genética , Ubiquitinación
17.
Mol Cell ; 47(5): 777-87, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22841484

RESUMEN

Multidrug transporters are ubiquitous efflux pumps that provide cells with defense against various toxic compounds. In bacteria, which typically harbor numerous multidrug transporter genes, the majority function as secondary multidrug/proton antiporters. Proton-coupled secondary transport is a fundamental process that is not fully understood, largely owing to the obscure nature of proton-transporter interactions. Here we analyzed the substrate/proton coupling mechanism in MdfA, a model multidrug/proton antiporter. By measuring the effect of protons on substrate binding and by directly measuring proton binding and release, we show that substrates and protons compete for binding to MdfA. Our studies strongly suggest that competition is an integral feature of secondary multidrug transport. We identified the proton-binding acidic residue and show that, surprisingly, the substrate binds at a different site. Together, the results suggest an interesting mode of indirect competition as a mechanism of multidrug/proton antiport.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Diciclohexilcarbodiimida/farmacología , Escherichia coli/citología , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Concentración de Iones de Hidrógeno , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Compuestos Onio/antagonistas & inhibidores , Compuestos Onio/química , Compuestos Onio/farmacología , Compuestos Organofosforados/antagonistas & inhibidores , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacología , Pironina/farmacología
18.
Gastroenterology ; 154(3): 689-703, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29074451

RESUMEN

BACKGROUND & AIMS: Little is known about the signaling pathways that initiate and promote acute pancreatitis (AP). The pathogenesis of AP has been associated with abnormal increases in cytosolic Ca2+, mitochondrial dysfunction, impaired autophagy, and endoplasmic reticulum (ER) stress. We analyzed the mechanisms of these dysfunctions and their relationships, and how these contribute to development of AP in mice and rats. METHODS: Pancreatitis was induced in C57BL/6J mice (control) and mice deficient in peptidylprolyl isomerase D (cyclophilin D, encoded by Ppid) by administration of L-arginine (also in rats), caerulein, bile acid, or an AP-inducing diet. Parameters of pancreatitis, mitochondrial function, autophagy, ER stress, and lipid metabolism were measured in pancreatic tissue, acinar cells, and isolated mitochondria. Some mice with AP were given trehalose to enhance autophagic efficiency. Human pancreatitis tissues were analyzed by immunofluorescence. RESULTS: Mitochondrial dysfunction in pancreas of mice with AP was induced by either mitochondrial Ca2+ overload or through a Ca2+ overload-independent pathway that involved reduced activity of ATP synthase (80% inhibition in pancreatic mitochondria isolated from rats or mice given L-arginine). Both pathways were mediated by cyclophilin D and led to mitochondrial depolarization and fragmentation. Mitochondrial dysfunction caused pancreatic ER stress, impaired autophagy, and deregulation of lipid metabolism. These pathologic responses were abrogated in cyclophilin D-knockout mice. Administration of trehalose largely prevented trypsinogen activation, necrosis, and other parameters of pancreatic injury in mice with L-arginine AP. Tissues from patients with pancreatitis had markers of mitochondrial damage and impaired autophagy, compared with normal pancreas. CONCLUSIONS: In different animal models, we find a central role for mitochondrial dysfunction, and for impaired autophagy as its principal downstream effector, in development of AP. In particular, the pathway involving enhanced interaction of cyclophilin D with ATP synthase mediates L-arginine-induced pancreatitis, a model of severe AP the pathogenesis of which has remained unknown. Strategies to restore mitochondrial and/or autophagic function might be developed for treatment of AP.


Asunto(s)
Autofagia , Estrés del Retículo Endoplásmico , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Páncreas/metabolismo , Pancreatitis/metabolismo , Enfermedad Aguda , Animales , Arginina , Autofagia/efectos de los fármacos , Ácidos y Sales Biliares , Señalización del Calcio , Ceruletida , Deficiencia de Colina/complicaciones , Peptidil-Prolil Isomerasa F , Ciclofilinas/deficiencia , Ciclofilinas/genética , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Etionina , Predisposición Genética a la Enfermedad , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Potencial de la Membrana Mitocondrial , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Páncreas/efectos de los fármacos , Páncreas/patología , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Pancreatitis/patología , Fenotipo , Ratas , Factores de Tiempo , Trehalosa/farmacología
19.
J Neurosci Res ; 97(12): 1689-1705, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31420910

RESUMEN

Oligomeric forms of α-synuclein are believed to cause mitochondrial injury, which may contribute to neurotoxicity in Parkinson's disease (PD). Here oligomers of α-synuclein were prepared using the dopamine metabolite, DOPAL (3,4-dihydroxyphenyl-acetaldehyde), in the presence of guanidinium hydrochloride. Electron microscopy, mass spectrometry, and Western blotting studies revealed enhanced and stable oligomerization with DOPAL compared with dopamine or CuCl2 /H2 O2 . Using isolated mouse brain mitochondria, DOPAL-oligomerized α-synuclein (DOS) significantly inhibited oxygen consumption rates compared with untreated, control-fibrillated, and dopamine-fibrillated synuclein, or with monomeric α-synuclein. Inhibition was greater in the presence of malate plus pyruvate than with succinate, suggesting the involvement of mitochondrial complex I. Mitochondrial membrane potential studies using fluorescent probes, JC-1, and Safranin O also detected enhanced inhibition by DOS compared with the other aggregated forms of α-synuclein. Testing a small customized chemical library, four compounds were identified that rescued membrane potential from DOS injury. While diverse in chemical structure and mechanism, each compound has been reported to interact with mitochondrial complex I. Western blotting studies revealed that none of the four compounds disrupted the oligomeric banding pattern of DOS, suggesting their protection involved direct mitochondrial interaction. The remaining set of chemicals also did not disrupt oligomeric banding, attesting to the high structural stability of this α-synuclein proteoform. DOPAL and α-synuclein are both found in dopaminergic neurons, where their levels are elevated in PD and in animal models exposed to chemical toxicants, including agricultural pesticides. The current study provides further evidence of α-synuclein-induced mitochondrial injury and a likely role in PD neuropathology.


Asunto(s)
Dopamina/metabolismo , Mitocondrias/metabolismo , alfa-Sinucleína/metabolismo , Animales , Dopamina/química , Dopamina/farmacología , Femenino , Masculino , Potencial de la Membrana Mitocondrial , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Consumo de Oxígeno , Enfermedad de Parkinson , Agregado de Proteínas/efectos de los fármacos , alfa-Sinucleína/química , alfa-Sinucleína/farmacología , alfa-Sinucleína/ultraestructura
20.
J Surg Res ; 233: 20-25, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30502249

RESUMEN

BACKGROUND: Loss of intestinal barrier integrity plays a fundamental role in the pathogenesis of various gastrointestinal diseases and is implicated in the onset of sepsis and multiple organ failure. An array of methods to assess different aspects of intestinal barrier function suffers from lack of sensitivity, prolonged periods of specimen collection, or high expense. We have developed a technique to measure the concentration of the food dye FD&C Blue #1 from blood and sought to assess its utility in measuring intestinal barrier function in humans. MATERIALS AND METHODS: Four healthy volunteers and 10 critically ill subjects in the intensive care unit were recruited in accordance with an institutional review board approved protocol. Subjects were given 0.5 mg/kg Blue #1 enterally as an aqueous solution of diluted food coloring. Five blood specimens were drawn per subject: 0 h (before dose), 1, 2, 4, and 8 h. After plasma isolation, organic extracts were analyzed by high-performance liquid chromatography/mass spectrometry detecting the presence of unmodified dye. RESULTS: We found no baseline detectable absorption in healthy volunteers. After including the subjects in the intensive care unit, we compared dye absorption in the six subjects who met criteria for septic shock with the eight who did not. Septic patients demonstrated significantly greater absorption of Blue #1 after 2 h. CONCLUSIONS: We have developed a novel, easy-to-use method to measure intestinal barrier integrity using a food grade dye detectable by mass spectrometry analysis of patient blood following oral administration.


Asunto(s)
Colorantes de Alimentos/farmacocinética , Absorción Intestinal/fisiología , Mucosa Intestinal/metabolismo , Choque Séptico/diagnóstico , Administración Oral , Adulto , Bencenosulfonatos/administración & dosificación , Bencenosulfonatos/sangre , Bencenosulfonatos/farmacocinética , Enfermedad Crítica , Estudios de Factibilidad , Femenino , Colorantes de Alimentos/administración & dosificación , Colorantes de Alimentos/análisis , Voluntarios Sanos , Humanos , Unidades de Cuidados Intensivos , Masculino , Permeabilidad , Estudios Prospectivos , Choque Séptico/sangre , Choque Séptico/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA