Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
N Engl J Med ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38804512

RESUMEN

BACKGROUND: Minimal change disease and primary focal segmental glomerulosclerosis in adults, along with idiopathic nephrotic syndrome in children, are immune-mediated podocytopathies that lead to nephrotic syndrome. Autoantibodies targeting nephrin have been found in patients with minimal change disease, but their clinical and pathophysiological roles are unclear. METHODS: We conducted a multicenter study to analyze antinephrin autoantibodies in adults with glomerular diseases, including minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, IgA nephropathy, antineutrophil cytoplasmic antibody-associated glomerulonephritis, and lupus nephritis, as well as in children with idiopathic nephrotic syndrome and in controls. We also created an experimental mouse model through active immunization with recombinant murine nephrin. RESULTS: The study included 539 patients (357 adults and 182 children) and 117 controls. Among the adults, antinephrin autoantibodies were found in 46 of the 105 patients (44%) with minimal change disease, 7 of 74 (9%) with primary focal segmental glomerulosclerosis, and only in rare cases among the patients with other conditions. Of the 182 children with idiopathic nephrotic syndrome, 94 (52%) had detectable antinephrin autoantibodies. In the subgroup of patients with active minimal change disease or idiopathic nephrotic syndrome who were not receiving immunosuppressive treatment, the prevalence of antinephrin autoantibodies was as high as 69% and 90%, respectively. At study inclusion and during follow-up, antinephrin autoantibody levels were correlated with disease activity. Experimental immunization induced a nephrotic syndrome, a minimal change disease-like phenotype, IgG localization to the podocyte slit diaphragm, nephrin phosphorylation, and severe cytoskeletal changes in mice. CONCLUSIONS: In this study, circulating antinephrin autoantibodies were common in patients with minimal change disease or idiopathic nephrotic syndrome and appeared to be markers of disease activity. Their binding at the slit diaphragm induced podocyte dysfunction and nephrotic syndrome, which highlights their pathophysiological significance. (Funded by Deutsche Forschungsgemeinschaft and others.).

2.
Immunity ; 45(5): 1078-1092, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27851911

RESUMEN

Th17 cells are most abundant in the gut, where their presence depends on the intestinal microbiota. Here, we examined whether intestinal Th17 cells contribute to extra-intestinal Th17 responses in autoimmune kidney disease. We found high frequencies of Th17 cells in the kidneys of patients with antineutrophil cytoplasmatic antibody (ANCA)-associated glomerulonephritis. We utilized photoconversion of intestinal cells in Kaede mice to track intestinal T cell mobilization upon glomerulonephritis induction, and we found that Th17 cells egress from the gut in a S1P-receptor-1-dependent fashion and subsequently migrate to the kidney via the CCL20/CCR6 axis. Depletion of intestinal Th17 cells in germ-free and antibiotic-treated mice ameliorated renal disease, whereas expansion of these cells upon Citrobacter rodentium infection exacerbated pathology. Thus, in some autoimmune settings, intestinal Th17 cells migrate into target organs, where they contribute to pathology. Targeting the intestinal Th17 cell "reservoir" may present a therapeutic strategy for these autoimmune disorders.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Quimiotaxis de Leucocito/inmunología , Glomerulonefritis/inmunología , Receptores de Lisoesfingolípidos/inmunología , Células Th17/inmunología , Animales , Citrobacter rodentium , Modelos Animales de Enfermedad , Infecciones por Enterobacteriaceae/inmunología , Citometría de Flujo , Humanos , Intestinos/inmunología , Riñón/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Esfingosina-1-Fosfato
3.
J Immunol ; 210(11): 1717-1727, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37058116

RESUMEN

IL-6 plays a fundamental role in T cell differentiation and is strictly controlled by surface expression and shedding of IL-6R. IL-6 also acts on other cells that might affect T cell maturation. To study the impact of cell-autonomous and uncontrolled IL-6 signaling in T cells, we generated mice with a constitutively active IL-6R gp130 chain (Lgp130) expressed either in all T cells (Lgp130 × CD4Cre mice) or inducible in CD4+ T cells (Lgp130 × CD4CreERT2 mice). Lgp130 × CD4Cre mice accumulated activated T cells, including TH17 cells, in the lung, resulting in severe inflammation. Tamoxifen treatment of Lgp130 × CD4CreERT2 mice caused Lgp130 expression in 40-50% of CD4+ T cells, but mice developed lung disease only after several months. Lgp130+ CD4+ T cells were also enriched for TH17 cells; however, there was concomitant expansion of Lgp130- regulatory T cells, which likely restricted pathologic Lgp130+ T cells. In vitro, constitutive gp130 signaling in T cells enhanced but was not sufficient for TH17 cell differentiation. Augmented TH17 cell development of Lgp130+ T cells was also observed in Lgp130 × CD4CreERT2 mice infected with Staphylococcus aureus, but gp130 activation did not interfere with formation of TH1 cells against Listeria monocytogenes. Lgp130+ CD4+ T cells acquired a memory T cell phenotype and persisted in high numbers as a polyclonal T cell population in lymphoid and peripheral tissues, but we did not observe T cell lymphoma formation. In conclusion, cell-autonomous gp130 signaling alters T cell differentiation. Although gp130 signaling is not sufficient for TH17 cell differentiation, it still promotes accumulation of activated T cells in the lung that cause tissue inflammation.


Asunto(s)
Neumonía , Células Th17 , Animales , Ratones , Diferenciación Celular , Receptor gp130 de Citocinas/metabolismo , Inflamación , Interleucina-6/metabolismo , Pulmón/metabolismo , Células TH1/metabolismo , Células Th17/metabolismo
4.
J Am Soc Nephrol ; 35(3): 335-346, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38082490

RESUMEN

SIGNIFICANCE STATEMENT: Reliable prediction tools are needed to personalize treatment in ANCA-associated GN. More than 1500 patients were collated in an international longitudinal study to revise the ANCA kidney risk score. The score showed satisfactory performance, mimicking the original study (Harrell's C=0.779). In the development cohort of 959 patients, no additional parameters aiding the tool were detected, but replacing the GFR with creatinine identified an additional cutoff. The parameter interstitial fibrosis and tubular atrophy was modified to allow wider access, risk points were reweighted, and a fourth risk group was created, improving predictive ability (C=0.831). In the validation, the new model performed similarly well with excellent calibration and discrimination ( n =480, C=0.821). The revised score optimizes prognostication for clinical practice and trials. BACKGROUND: Reliable prediction tools are needed to personalize treatment in ANCA-associated GN. A retrospective international longitudinal cohort was collated to revise the ANCA renal risk score. METHODS: The primary end point was ESKD with patients censored at last follow-up. Cox proportional hazards were used to reweight risk factors. Kaplan-Meier curves, Harrell's C statistic, receiver operating characteristics, and calibration plots were used to assess model performance. RESULTS: Of 1591 patients, 1439 were included in the final analyses, 2:1 randomly allocated per center to development and validation cohorts (52% male, median age 64 years). In the development cohort ( n =959), the ANCA renal risk score was validated and calibrated, and parameters were reinvestigated modifying interstitial fibrosis and tubular atrophy allowing semiquantitative reporting. An additional cutoff for kidney function (K) was identified, and serum creatinine replaced GFR (K0: <250 µ mol/L=0, K1: 250-450 µ mol/L=4, K2: >450 µ mol/L=11 points). The risk points for the percentage of normal glomeruli (N) and interstitial fibrosis and tubular atrophy (T) were reweighted (N0: >25%=0, N1: 10%-25%=4, N2: <10%=7, T0: none/mild or <25%=0, T1: ≥ mild-moderate or ≥25%=3 points), and four risk groups created: low (0-4 points), moderate (5-11), high (12-18), and very high (21). Discrimination was C=0.831, and the 3-year kidney survival was 96%, 79%, 54%, and 19%, respectively. The revised score performed similarly well in the validation cohort with excellent calibration and discrimination ( n =480, C=0.821). CONCLUSIONS: The updated score optimizes clinicopathologic prognostication for clinical practice and trials.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Anticuerpos Anticitoplasma de Neutrófilos , Humanos , Masculino , Persona de Mediana Edad , Femenino , Estudios Longitudinales , Estudios Retrospectivos , Riñón , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/diagnóstico , Creatinina , Factores de Riesgo , Fibrosis , Atrofia
5.
Hum Mol Genet ; 31(9): 1357-1369, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34740236

RESUMEN

Nephronophthisis-related ciliopathies (NPHP-RC) comprises a group of inherited kidney diseases, caused by mutations in genes encoding proteins localizing to primary cilia. NPHP-RC represents one of the most frequent monogenic causes of renal failure within the first three decades of life, but its molecular disease mechanisms remain unclear. Here, we identified biallelic ANKS6 mutations in two affected siblings with late-onset chronic kidney disease by whole-exome sequencing. We employed patient-derived fibroblasts generating an in vitro model to study the precise biological impact of distinct human ANKS6 mutations, completed by immunohistochemistry studies on renal biopsy samples. Functional studies using patient-derived cells showed an impaired integrity of the ciliary inversin compartment with reduced cilia length. Further analyses demonstrated that ANKS6 deficiency leads to a dysregulation of Hippo-signaling through nuclear yes-associated protein (YAP) imbalance and disrupted ciliary localization of YAP. In addition, an altered transcriptional activity of canonical Wnt target genes and altered expression of non-phosphorylated (active) ß-catenin and phosphorylated glycogen synthase kinase 3ß were observed. Upon ciliation, ANKS6 deficiency revealed a deranged subcellular localization and expression of components of the endocytic recycling compartment. Our results demonstrate that ANKS6 plays a key role in regulating the Hippo pathway, and ANKS6 deficiency is linked to dysregulation of signaling pathways. Our study provides molecular clues in understanding pathophysiological mechanisms of NPHP-RC and may offer new therapeutic targets.


Asunto(s)
Ciliopatías , Enfermedades Renales Quísticas , Enfermedades Renales Poliquísticas , Insuficiencia Renal Crónica , Cilios/patología , Ciliopatías/metabolismo , Femenino , Humanos , Enfermedades Renales Quísticas/metabolismo , Masculino , Mutación , Proteínas Nucleares , Enfermedades Renales Poliquísticas/genética
6.
PLoS Pathog ; 18(4): e1010430, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35446923

RESUMEN

Staphylococcus aureus is frequently detected in patients with sepsis and thus represents a major health burden worldwide. CD4+ T helper cells are involved in the immune response to S. aureus by supporting antibody production and phagocytosis. In particular, Th1 and Th17 cells secreting IFN-γ and IL-17A, are involved in the control of systemic S. aureus infections in humans and mice. To investigate the role of T cells in severe S. aureus infections, we established a mouse sepsis model in which the kidney was identified to be the organ with the highest bacterial load and abundance of Th17 cells. In this model, IL-17A but not IFN-γ was required for bacterial control. Using Il17aCre × R26YFP mice we could show that Th17 fate cells produce Th17 and Th1 cytokines, indicating a high degree of Th17 cell plasticity. Single cell RNA-sequencing of renal Th17 fate cells uncovered their heterogeneity and identified a cluster with a Th1 expression profile within the Th17 cell population, which was absent in mice with T-bet/Tbx21-deficiency in Th17 cells (Il17aCre x R26eYFP x Tbx21-flox). Blocking Th17 to Th1 transdifferentiation in Th17 fate cells in these mice resulted in increased S. aureus tissue loads. In summary, we highlight the impact of Th17 cells in controlling systemic S. aureus infections and show that T-bet expression by Th17 cells is required for bacterial clearance. While targeting the Th17 cell immune response is an important therapeutic option in autoimmunity, silencing Th17 cells might have detrimental effects in bacterial infections.


Asunto(s)
Sepsis , Infecciones Estafilocócicas , Proteínas de Dominio T Box/metabolismo , Animales , Plasticidad de la Célula , Humanos , Interleucina-17 , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Staphylococcus aureus , Células TH1 , Células Th17
7.
J Am Soc Nephrol ; 34(6): 1003-1018, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36913357

RESUMEN

SIGNIFICANCE STATEMENT: T-cell infiltration is a hallmark of crescentic GN (cGN), often caused by ANCA-associated vasculitis. Pathogenic T-cell subsets, their clonality, and downstream effector mechanisms leading to kidney injury remain to be fully elucidated. Single-cell RNA sequencing and T-cell receptor sequencing revealed activated, clonally expanded cytotoxic CD4 + and CD8 + T cells in kidneys from patients with ANCA-associated cGN. In experimental cGN, kidney-infiltrating CD8 + T cells expressed the cytotoxic molecule, granzyme B (GzmB), which induced apoptosis in renal tissue cells by activation of procaspase-3, and aggravated disease pathology. These findings describe a pathogenic function of (clonally expanded) cytotoxic T cells in cGN and identify GzmB as a mediator and potential therapeutic target in immune-mediated kidney disease. BACKGROUND: Crescentic GN (cGN) is an aggressive form of immune-mediated kidney disease that is an important cause of end stage renal failure. Antineutrophilic cytoplasmic antibody (ANCA)-associated vasculitis is a common cause. T cells infiltrate the kidney in cGN, but their precise role in autoimmunity is not known. METHODS: Combined single-cell RNA sequencing and single-cell T-cell receptor sequencing were conducted on CD3 + T cells isolated from renal biopsies and blood of patients with ANCA-associated cGN and from kidneys of mice with experimental cGN. Functional and histopathological analyses were performed with Cd8a-/- and GzmB-/- mice. RESULTS: Single-cell analyses identified activated, clonally expanded CD8 + and CD4 + T cells with a cytotoxic gene expression profile in the kidneys of patients with ANCA-associated cGN. Clonally expanded CD8 + T cells expressed the cytotoxic molecule, granzyme B (GzmB), in the mouse model of cGN. Deficiency of CD8 + T cells or GzmB ameliorated the course of cGN. CD8 + T cells promoted macrophage infiltration and GzmB activated procaspase-3 in renal tissue cells, thereby increasing kidney injury. CONCLUSIONS: Clonally expanded cytotoxic T cells have a pathogenic function in immune-mediated kidney disease.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Glomerulonefritis Membranoproliferativa , Glomerulonefritis , Animales , Ratones , Caspasa 3 , Granzimas , Linfocitos T Citotóxicos/metabolismo , Linfocitos T Citotóxicos/patología , Anticuerpos Anticitoplasma de Neutrófilos , Glomerulonefritis Membranoproliferativa/complicaciones , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/complicaciones , Enfermedad Aguda
8.
J Am Soc Nephrol ; 34(3): 369-373, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36735391

RESUMEN

SIGNIFICANCE STATEMENT: Membranous nephropathy (MN) is an autoimmune kidney disease characterized by immune deposits in the glomerular basement membrane. Circulating anti-phospholipase A 2 receptor 1 (PLA 2 R1) antibodies are detectable in 70%-80% of patients with MN, but experimental evidence of pathogenicity has been lacking. This study demonstrates the pathogenicity of human anti-PLA 2 R1 antibodies in minipigs, a model for MN that intrinsically expresses PLA 2 R1 on podocytes. After passive transfer of human anti-PLA 2 R1 antibody-containing plasma from patients with PLA 2 R1-associated MN to minipigs, antibodies were detected in the minipig glomeruli, but not in response to plasma from healthy controls. The minipigs developed histomorphological characteristics of MN, local complement activation in the glomeruli, and low-level proteinuria within 7 days, showing that human anti-PLA 2 R1 antibodies are pathogenic. BACKGROUND: Primary membranous nephropathy (MN) is an autoimmune kidney disease in which immune complexes are deposited beneath the epithelium in the glomeruli. The condition introduces a high risk for end-stage kidney disease. Seventy percent to 80% of patients with MN have circulating antibodies against phospholipase A 2 receptor 1 (PLA 2 R1), and levels correlate with treatment response and prognosis. However, experimental evidence that human anti-PLA 2 R1 antibodies induce MN has been elusive. METHODS: In passive transfer experiments, minipigs received plasma or purified IgG from patients with PLA 2 R1-associated MN or from healthy controls. Anti-PLA 2 R1 antibodies and proteinuria were monitored using Western blot, ELISA, and Coomassie staining. Kidney tissues were analyzed using immunohistochemistry, immunofluorescence, electron microscopy, and proteomic analyses. RESULTS: Minipigs, like humans, express PLA 2 R1 on podocytes. Human anti-PLA 2 R1 antibodies bound to minipig PLA 2 R1 in vitro and in vivo . Passive transfer of human anti-PLA 2 R1 antibodies from patients with PLA 2 R1-associated MN to minipigs led to histological characteristics of human early-stage MN, activation of components of the complement cascade, and low levels of proteinuria. We observed development of an autologous, later phase of disease. CONCLUSIONS: A translational approach from humans to minipigs showed that human anti-PLA 2 R1 antibodies are pathogenic in MN, although in the heterologous phase of disease only low-level proteinuria developed.


Asunto(s)
Enfermedades Autoinmunes , Glomerulonefritis Membranosa , Humanos , Animales , Porcinos , Porcinos Enanos/metabolismo , Proyectos Piloto , Virulencia , Proteómica , Autoanticuerpos , Proteinuria , Receptores de Fosfolipasa A2
9.
Kidney Int ; 104(5): 916-928, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37598854

RESUMEN

The phospholipase A2 receptor 1 (PLA2R1) is the major target antigen in patients with membranous nephropathy (MN), an antibody-mediated autoimmune glomerular disease. Investigation of MN pathogenesis has been hampered by the lack of reliable animal models. Here, we overcome this issue by generating a transgenic mouse line expressing a chimeric PLA2R1 (chPLA2R1) consisting of three human PLA2R1 domains (cysteine-rich, fibronectin type-II and CTLD1) and seven murine PLA2R1 domains (CTLD2-8) specifically in podocytes. Mice expressing the chPLA2R1 were healthy at birth and showed no major glomerular alterations when compared to mice with a wild-type PLA2R1 status. Upon active immunization with human PLA2R1 (hPLA2R1), chPLA2R1-positive mice developed anti-hPLA2R1 antibodies, a nephrotic syndrome, and all major histological features of MN, including granular deposition of mouse IgG and complement components in immunofluorescence and subepithelial electron-dense deposits and podocyte foot process effacement in electron microscopy. In order to investigate the role of the complement system in this model, we further crossed chPLA2R1-positive mice with mice lacking the central complement component C3 (C3-/- mice). Upon immunization with hPLA2R1, chPLA2R1-positive C3-/- mice had substantially less severe albuminuria and nephrotic syndrome when compared to chPLA2R1-positive mice with a wild-type C3 status. In conclusion, we introduce a novel active immunization model of PLA2R1-associated MN and demonstrate a pathogenic role of the complement system in this model.


Asunto(s)
Enfermedades Autoinmunes , Glomerulonefritis Membranosa , Síndrome Nefrótico , Humanos , Ratones , Animales , Receptores de Fosfolipasa A2/genética , Autoanticuerpos , Ratones Transgénicos , Vacunación , Complemento C3 , Modelos Animales de Enfermedad
10.
Am J Pathol ; 192(12): 1670-1682, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36150506

RESUMEN

The development of focal and segmental glomerulosclerosis (FSGS) as a consequence of glomerular hypertension resulting from arterial hypertension is widely considered a podocyte disease. However, the primary damage is encountered in the mesangium. In acute settings, mesangial cells disconnect from their insertions to the glomerular basement membrane, causing a ballooning of capillaries and severe changes of the folding pattern of the glomerular basement membrane, of the arrangement of the capillaries, and thereby of the architecture of the tuft. The displacement of capillaries led to contact of podocytes and parietal epithelial cells, initiating the formation of tuft adhesions to Bowman's capsule, the committed lesion to progress to FSGS. In addition, the displacement of capillaries also caused an abnormal stretching of podocytes, resulting in podocyte damage. Thus, the podocyte damage that starts the sequence to FSGS is predicted to develop secondary to the mesangial damage. This sequence was found in two hypertensive rat models of FSGS and in human hypertensive nephrosclerosis.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Hipertensión Renal , Nefroesclerosis , Podocitos , Ratas , Humanos , Animales , Podocitos/patología , Glomeruloesclerosis Focal y Segmentaria/patología , Nefroesclerosis/complicaciones , Capilares/patología , Membrana Basal Glomerular/patología , Hipertensión Renal/complicaciones
11.
J Am Soc Nephrol ; 33(10): 1823-1831, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35985817

RESUMEN

BACKGROUND: Primary membranous nephropathy (MN) is caused by circulating autoantibodies binding to antigens on the podocyte surface. PLA2R1 is the main target antigen in 70%-80% of cases, but the pathogenesis is unresolved in 10%-15% of patients. METHODS: We used native western blotting to identify IgG4 autoantibodies, which bind an antigen endogenously expressed on podocyte membranes, in the serum of the index patient with MN. These IgG4 autoantibodies were used to immunoprecipitate the target antigen, and mass spectrometry was used to identify Netrin G1 (NTNG1). Using native western blot and ELISA, NTNG1 autoantibodies were analyzed in cohorts of 888 patients with MN or other glomerular diseases. RESULTS: NTNG1 was identified as a novel target antigen in MN. It is a membrane protein expressed in healthy podocytes. Immunohistochemistry confirmed granular NTNG1 positivity in subepithelial glomerular immune deposits. In prospective and retrospective MN cohorts, we identified three patients with NTNG1-associated MN who showed IgG4-dominant circulating NTNG1 autoantibodies, enhanced NTNG1 expression in the kidney, and glomerular IgG4 deposits. No NTNG1 autoantibodies were identified in 561 PLA2R1 autoantibodies-positive patients, 27 THSD7A autoantibodies-positive patients, and 77 patients with other glomerular diseases. In two patients with available follow-up of 2 and 4 years, both NTNG1 autoantibodies and proteinuria persisted. CONCLUSIONS: NTNG1 expands the repertoire of target antigens in patients with MN. The clinical role of NTNG1 autoantibodies remains to be defined.


Asunto(s)
Glomerulonefritis Membranosa , Humanos , Estudios Retrospectivos , Estudios Prospectivos , Autoanticuerpos , Inmunoglobulina G , Receptores de Fosfolipasa A2 , Netrinas , Poliésteres
12.
J Am Soc Nephrol ; 32(6): 1389-1408, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33785583

RESUMEN

BACKGROUND: Podocytes embrace the glomerular capillaries with foot processes, which are interconnected by a specialized adherens junction to ultimately form the filtration barrier. Altered adhesion and loss are common features of podocyte injury, which could be mediated by shedding of cell-adhesion molecules through the regulated activity of cell surface-expressed proteases. A Disintegrin and Metalloproteinase 10 (ADAM10) is such a protease known to mediate ectodomain shedding of adhesion molecules, among others. Here we evaluate the involvement of ADAM10 in the process of antibody-induced podocyte injury. METHODS: Membrane proteomics, immunoblotting, high-resolution microscopy, and immunogold electron microscopy were used to analyze human and murine podocyte ADAM10 expression in health and kidney injury. The functionality of ADAM10 ectodomain shedding for podocyte development and injury was analyzed, in vitro and in vivo, in the anti-podocyte nephritis (APN) model in podocyte-specific, ADAM10-deficient mice. RESULTS: ADAM10 is selectively localized at foot processes of murine podocytes and its expression is dispensable for podocyte development. Podocyte ADAM10 expression is induced in the setting of antibody-mediated injury in humans and mice. Podocyte ADAM10 deficiency attenuates the clinical course of APN and preserves the morphologic integrity of podocytes, despite subepithelial immune-deposit formation. Functionally, ADAM10-related ectodomain shedding results in cleavage of the cell-adhesion proteins N- and P-cadherin, thus decreasing their injury-related surface levels. This favors podocyte loss and the activation of downstream signaling events through the Wnt signaling pathway in an ADAM10-dependent manner. CONCLUSIONS: ADAM10-mediated ectodomain shedding of injury-related cadherins drives podocyte injury.


Asunto(s)
Proteína ADAM10/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteínas de la Membrana/metabolismo , Nefritis/metabolismo , Síndrome Nefrótico/metabolismo , Podocitos/metabolismo , Podocitos/patología , Insuficiencia Renal Crónica/metabolismo , Proteína ADAM10/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Autoanticuerpos/efectos adversos , Nitrógeno de la Urea Sanguínea , Cadherinas/metabolismo , Adhesión Celular , Comunicación Celular , Membrana Celular/metabolismo , Células Cultivadas , Creatinina/orina , Modelos Animales de Enfermedad , Femenino , Barrera de Filtración Glomerular/patología , Barrera de Filtración Glomerular/fisiopatología , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nefritis/patología , Síndrome Nefrótico/patología , Podocitos/fisiología , Proteómica , Análisis de Matrices Tisulares , Transcriptoma , Vía de Señalización Wnt
13.
Proteomics ; 21(20): e2100133, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34383378

RESUMEN

Identification of significant changes in urinary peptides may enable improved understanding of molecular disease mechanisms. We aimed towards identifying urinary peptides associated with critical course of COVID-19 to yield hypotheses on molecular pathophysiological mechanisms in disease development. In this multicentre prospective study urine samples of PCR-confirmed COVID-19 patients were collected in different centres across Europe. The urinary peptidome of 53 patients at WHO stages 6-8 and 66 at WHO stages 1-3 COVID-19 disease was analysed using capillary electrophoresis coupled to mass spectrometry. 593 peptides were identified significantly affected by disease severity. These peptides were compared with changes associated with kidney disease or heart failure. Similarities with kidney disease were observed, indicating comparable molecular mechanisms. In contrast, convincing similarity to heart failure could not be detected. The data for the first time showed deregulation of CD99 and polymeric immunoglobulin receptor peptides and of known peptides associated with kidney disease, including collagen and alpha-1-antitrypsin. Peptidomic findings were in line with the pathophysiology of COVID-19. The clinical corollary is that COVID-19 induces specific inflammation of numerous tissues including endothelial lining. Restoring these changes, especially in CD99, PIGR and alpha-1-antitripsin, may represent a valid and effective therapeutic approach in COVID-19, targeting improvement of endothelial integrity.


Asunto(s)
COVID-19 , Receptores de Inmunoglobulina Polimérica , Antígeno 12E7 , Humanos , Péptidos , Estudios Prospectivos , SARS-CoV-2
14.
Kidney Int ; 99(5): 1140-1148, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33359499

RESUMEN

BK polyomavirus-associated nephropathy is a common complication after kidney transplantation leading to reduced graft function or loss. The molecular pathogenesis of BK polyomavirus-induced nephropathy is not well understood. A recent study had described a protective effect of the activating natural killer cell receptor KIR3DS1 in BK polyomavirus-associated nephropathy, suggesting a role of NK cells in modulating disease progression. Using an in vitro cell culture model of human BK polyomavirus infection and kidney biopsy samples from patients with BK polyomavirus-associated nephropathy, we observed significantly increased surface expression of the ligand for KIR3DS1, HLA-F, on BK polyomavirus-infected kidney tubular cells. Upregulation of HLA-F expression resulted in significantly increased binding of KIR3DS1 to BK polyomavirus-infected cells and activation of primary KIR3DS-positive natural killer cells. Thus, our data provide a mechanism by which KIR3DS-positive natural killer cells can control BK polyomavirus infection of the kidney, and rationale for exploring HLA-F/KIR3DS1 interactions for immunotherapeutic approaches in BK polyomavirus-associated nephropathy.


Asunto(s)
Virus BK , Enfermedades Renales , Infecciones por Polyomavirus , Infecciones Tumorales por Virus , Humanos , Células Asesinas Naturales/metabolismo , Receptores KIR3DS1/genética , Receptores KIR3DS1/metabolismo , Regulación hacia Arriba
15.
Am J Transplant ; 21(9): 3175-3179, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33866674

RESUMEN

Membranous nephropathy (MN) constitutes a major cause of nephrotic syndrome (NS) in adults. After kidney transplantation (KTx), both recurrent and de novo MN has been reported. In addition to PLA2R and THSD7A, recent identification of neural EGFL-like-1 protein, NELL1, as a potential disease antigen has enriched our understanding of MN pathogenesis. To date, NELL1-positive MN has only been described in native kidneys, but never been diagnosed in renal allografts. We here report on a 56-year-old male kidney transplant recipient suffering from amyotrophic lateral sclerosis (ALS), who developed NS 25 years after KTx. Allograft biopsy revealed NELL1-positive MN. Using specifically established immunoblotting techniques, we detected new-onset NELL1-IgG1, IgG3, and IgG4 antibodies in the patient´s serum correlating with the course of proteinuria. While primary renal disease was undetermined, MN recurrence seemed unlikely given the long-time span since KTx. By clinical investigation of de novo etiologies, we did not detect an underlying malignancy. However, previous self-medication with dimercaptopropane sulfonate (DMPS) and alpha lipoic acid (ALA) represented a potential trigger and cessation associated with partial remission of proteinuria. This report illustrates the first case of posttransplant NS due to NELL1-positive MN. Monitoring NELL1 antibodies in the serum promise to be a non-invasive diagnostic tool guiding disease management.


Asunto(s)
Glomerulonefritis Membranosa , Trasplante de Riñón , Síndrome Nefrótico , Adulto , Autoanticuerpos , Proteínas de Unión al Calcio , Glomerulonefritis Membranosa/etiología , Humanos , Inmunoglobulina G , Riñón , Trasplante de Riñón/efectos adversos , Masculino , Persona de Mediana Edad , Síndrome Nefrótico/etiología , Receptores de Fosfolipasa A2
16.
Cell Tissue Res ; 385(2): 355-370, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34613485

RESUMEN

Complement is an evolutionarily conserved system which is important in the defense against microorganisms and also in the elimination of modified or necrotic elements of the body. Complement is activated in a cascade type manner and activation and all steps of cascade progression are tightly controlled and regulatory interleaved with many processes of inflammatory machinery. Overshooting of the complement system due to dysregulation can result in the two prototypes of primary complement mediated renal diseases: C3 glomerulopathy and thrombotic microangiopathy. Apart from these, complement also is highly activated in many other inflammatory native kidney diseases, such as membranous nephropathy, ANCA-associated necrotizing glomerulonephritis, and IgA nephropathy. Moreover, it likely plays an important role also in the transplant setting, such as in antibody-mediated rejection or in hematopoietic stem cell transplant associated thrombotic microangiopathy. In this review, these glomerular disorders are discussed with regard to the role of complement in their pathogenesis. The consequential, respective clinical trials for complement inhibitory therapy strategies for these diseases are described.


Asunto(s)
Glomérulos Renales/patología , Riñón/patología , Animales , Humanos
17.
Cell Tissue Res ; 385(2): 489-500, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33864499

RESUMEN

Proteases play a central role in regulating renal pathophysiology and are increasingly evaluated as actionable drug targets. Here, we review the role of proteolytic systems in inflammatory kidney disease. Inflammatory kidney diseases are associated with broad dysregulations of extracellular and intracellular proteolysis. As an example of a proteolytic system, the complement system plays a significant role in glomerular inflammatory kidney disease and is currently under clinical investigation. Based on two glomerular kidney diseases, lupus nephritis, and membranous nephropathy, we portrait two proteolytic pathomechanisms and the role of the complement system. We discuss how profiling proteolytic activity in patient samples could be used to stratify patients for more targeted interventions in inflammatory kidney diseases. We also describe novel comprehensive, quantitative tools to investigate the entirety of proteolytic processes in a tissue sample. Emphasis is placed on mass spectrometric approaches that enable the comprehensive analysis of the complement system, as well as protease activities and regulation in general.


Asunto(s)
Inflamación/patología , Glomérulos Renales/patología , Animales , Humanos , Proteolisis
18.
Histopathology ; 78(5): 738-748, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33078472

RESUMEN

AIMS: Renal changes in patients with myeloproliferative neoplasms (MPNs) or myelodysplastic syndrome (MDS)/MPNs have been addressed by few, respectively no, reports. The aim of this study was to focus on a systematic evaluation of renal biopsies in patients with MPNs or MDS/MPNs. METHODS AND RESULTS: The cohort comprised 29 patients (23 men) aged 67 ± 11 years (mean ± standard deviation), diagnosed with chronic myeloid leukaemia (n = 5), polycythaemia vera (n = 9), primary myelofibrosis (n = 5), essential thrombocythaemia (n = 2), or chronic myelomonocytic leukaemia (n = 4), as well as MPNs or MDS/MPNs not otherwise specified (n = 4). Patients manifested with proteinuria (93%), partially in the nephrotic range (46%), haematuria (72%), and impaired kidney function (93%). The most prominent histological findings included double-contoured glomerular basement membranes (71%), acute endothelial damage (68%), intracapillary platelet aggregation (62%), mesangiolysis (21%), thrombotic microangiopathy (24%), segmental glomerulosclerosis (66%), mesangial hypercellularity and sclerosis, extramedullary haematopoiesis (17%), and also IgA nephropathy (21%) and glomerulonephritis (GN) with features of infection-related GN (21%). MPN and MDS/MPN patients showed significantly more chronic changes than age-matched and sex-matched controls, including global and segmental glomerulosclerosis, mesangial sclerosis, and hypercellularity, whereas the extent of arteriosclerosis was comparable. CONCLUSIONS: MPN and MDS/MPN patients show glomerular scarring that exceeds age-related phenomena. Ongoing endothelial damage, growth factors released by platelets and deposition of immune complexes are probably the causative mechanisms. Early recognition of renal failure heralded by proteinuria and haematuria, and consequent control of risk factors for kidney failure, should be recommended for MPN and MDS/MPN patients.


Asunto(s)
Enfermedades Renales/etiología , Enfermedades Mielodisplásicas-Mieloproliferativas , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Glomerulonefritis/etiología , Humanos , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/complicaciones , Enfermedades Mielodisplásicas-Mieloproliferativas/complicaciones , Trastornos Mieloproliferativos/complicaciones , Neoplasias/complicaciones , Factores de Riesgo , Microangiopatías Trombóticas/etiología
19.
J Am Soc Nephrol ; 31(2): 241-256, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31980588

RESUMEN

Sequence and copy number variations in the human CFHR-Factor H gene cluster comprising the complement genes CFHR1, CFHR2, CFHR3, CFHR4, CFHR5, and Factor H are linked to the human kidney diseases atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy. Distinct genetic and chromosomal alterations, deletions, or duplications generate hybrid or mutant CFHR genes, as well as hybrid CFHR-Factor H genes, and alter the FHR and Factor H plasma repertoire. A clear association between the genetic modifications and the pathologic outcome is emerging: CFHR1, CFHR3, and Factor H gene alterations combined with intact CFHR2, CFHR4, and CFHR5 genes are reported in atypical hemolytic uremic syndrome. But alterations in each of the five CFHR genes in the context of an intact Factor H gene are described in C3 glomerulopathy. These genetic modifications influence complement function and the interplay of the five FHR proteins with each other and with Factor H. Understanding how mutant or hybrid FHR proteins, Factor H::FHR hybrid proteins, and altered Factor H, FHR plasma profiles cause pathology is of high interest for diagnosis and therapy.


Asunto(s)
Síndrome Hemolítico Urémico Atípico/genética , Complemento C3/análisis , Glomerulonefritis Membranoproliferativa/genética , Síndrome Hemolítico Urémico Atípico/etiología , Factor H de Complemento/química , Factor H de Complemento/genética , Factor H de Complemento/fisiología , Variaciones en el Número de Copia de ADN , Predisposición Genética a la Enfermedad , Variación Genética , Glomerulonefritis Membranoproliferativa/etiología , Humanos , Riñón/patología , Familia de Multigenes
20.
J Am Soc Nephrol ; 31(4): 799-816, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32086278

RESUMEN

BACKGROUND: Hereditary deficiency of adenine phosphoribosyltransferase causes 2,8-dihydroxyadenine (2,8-DHA) nephropathy, a rare condition characterized by formation of 2,8-DHA crystals within renal tubules. Clinical relevance of rodent models of 2,8-DHA crystal nephropathy induced by excessive adenine intake is unknown. METHODS: Using animal models and patient kidney biopsies, we assessed the pathogenic sequelae of 2,8-DHA crystal-induced kidney damage. We also used knockout mice to investigate the role of TNF receptors 1 and 2 (TNFR1 and TNFR2), CD44, or alpha2-HS glycoprotein (AHSG), all of which are involved in the pathogenesis of other types of crystal-induced nephropathies. RESULTS: Adenine-enriched diet in mice induced 2,8-DHA nephropathy, leading to progressive kidney disease, characterized by crystal deposits, tubular injury, inflammation, and fibrosis. Kidney injury depended on crystal size. The smallest crystals were endocytosed by tubular epithelial cells. Crystals of variable size were excreted in urine. Large crystals obstructed whole tubules. Medium-sized crystals induced a particular reparative process that we term extratubulation. In this process, tubular cells, in coordination with macrophages, overgrew and translocated crystals into the interstitium, restoring the tubular luminal patency; this was followed by degradation of interstitial crystals by granulomatous inflammation. Patients with adenine phosphoribosyltransferase deficiency showed similar histopathological findings regarding crystal morphology, crystal clearance, and renal injury. In mice, deletion of Tnfr1 significantly reduced tubular CD44 and annexin two expression, as well as inflammation, thereby ameliorating the disease course. In contrast, genetic deletion of Tnfr2, Cd44, or Ahsg had no effect on the manifestations of 2,8-DHA nephropathy. CONCLUSIONS: Rodent models of the cellular and molecular mechanisms of 2,8-DHA nephropathy and crystal clearance have clinical relevance and offer insight into potential future targets for therapeutic interventions.


Asunto(s)
Adenina Fosforribosiltransferasa/deficiencia , Adenina/análogos & derivados , Enfermedades Renales/etiología , Enfermedades Renales/patología , Errores Innatos del Metabolismo/etiología , Errores Innatos del Metabolismo/patología , Urolitiasis/etiología , Urolitiasis/patología , Adenina/fisiología , Adenina Fosforribosiltransferasa/metabolismo , Adulto , Animales , Estudios de Cohortes , Dieta , Modelos Animales de Enfermedad , Femenino , Humanos , Lactante , Masculino , Errores Innatos del Metabolismo/metabolismo , Ratones , Persona de Mediana Edad , Urolitiasis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA