Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 176(3): 505-519.e22, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30612738

RESUMEN

Genomic instability can be a hallmark of both human genetic disease and cancer. We identify a deleterious UBQLN4 mutation in families with an autosomal recessive syndrome reminiscent of genome instability disorders. UBQLN4 deficiency leads to increased sensitivity to genotoxic stress and delayed DNA double-strand break (DSB) repair. The proteasomal shuttle factor UBQLN4 is phosphorylated by ATM and interacts with ubiquitylated MRE11 to mediate early steps of homologous recombination-mediated DSB repair (HRR). Loss of UBQLN4 leads to chromatin retention of MRE11, promoting non-physiological HRR activity in vitro and in vivo. Conversely, UBQLN4 overexpression represses HRR and favors non-homologous end joining. Moreover, we find UBQLN4 overexpressed in aggressive tumors. In line with an HRR defect in these tumors, UBQLN4 overexpression is associated with PARP1 inhibitor sensitivity. UBQLN4 therefore curtails HRR activity through removal of MRE11 from damaged chromatin and thus offers a therapeutic window for PARP1 inhibitor treatment in UBQLN4-overexpressing tumors.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Nucleares/genética , Proteínas Portadoras/metabolismo , Cromatina/metabolismo , ADN , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/metabolismo , Femenino , Inestabilidad Genómica , Mutación de Línea Germinal , Recombinación Homóloga , Humanos , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Masculino , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Cultivo Primario de Células , Reparación del ADN por Recombinación
2.
EMBO J ; 39(9): e102731, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32149416

RESUMEN

Mitochondria house anabolic and catabolic processes that must be balanced and adjusted to meet cellular demands. The RNA-binding protein CLUH (clustered mitochondria homolog) binds mRNAs of nuclear-encoded mitochondrial proteins and is highly expressed in the liver, where it regulates metabolic plasticity. Here, we show that in primary hepatocytes, CLUH coalesces in specific ribonucleoprotein particles that define the translational fate of target mRNAs, such as Pcx, Hadha, and Hmgcs2, to match nutrient availability. Moreover, CLUH granules play signaling roles, by recruiting mTOR kinase and the RNA-binding proteins G3BP1 and G3BP2. Upon starvation, CLUH regulates translation of Hmgcs2, involved in ketogenesis, inhibits mTORC1 activation and mitochondrial anabolic pathways, and promotes mitochondrial turnover, thus allowing efficient reprograming of metabolic function. In the absence of CLUH, a mitophagy block causes mitochondrial clustering that is rescued by rapamycin treatment or depletion of G3BP1 and G3BP2. Our data demonstrate that metabolic adaptation of liver mitochondria to nutrient availability depends on a compartmentalized CLUH-dependent post-transcriptional mechanism that controls both mTORC1 and G3BP signaling and ensures survival.


Asunto(s)
Mitocondrias Hepáticas/fisiología , Proteínas Mitocondriales/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Animales , Células COS , Chlorocebus aethiops , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Mitofagia , Proteínas de Unión al ARN/genética
3.
Blood ; 137(5): 646-660, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33538798

RESUMEN

Richter's transformation (RT) is an aggressive lymphoma that occurs upon progression from chronic lymphocytic leukemia (CLL). Transformation has been associated with genetic aberrations in the CLL phase involving TP53, CDKN2A, MYC, and NOTCH1; however, a significant proportion of RT cases lack CLL phase-associated events. Here, we report that high levels of AKT phosphorylation occur both in high-risk CLL patients harboring TP53 and NOTCH1 mutations as well as in patients with RT. Genetic overactivation of Akt in the murine Eµ-TCL1 CLL mouse model resulted in CLL transformation to RT with significantly reduced survival and an aggressive lymphoma phenotype. In the absence of recurrent mutations, we identified a profile of genomic aberrations intermediate between CLL and diffuse large B-cell lymphoma. Multiomics assessment by phosphoproteomic/proteomic and single-cell transcriptomic profiles of this Akt-induced murine RT revealed an S100 protein-defined subcluster of highly aggressive lymphoma cells that developed from CLL cells, through activation of Notch via Notch ligand expressed by T cells. Constitutively active Notch1 similarly induced RT of murine CLL. We identify Akt activation as an initiator of CLL transformation toward aggressive lymphoma by inducing Notch signaling between RT cells and microenvironmental T cells.


Asunto(s)
Leucemia Linfocítica Crónica de Células B/patología , Linfoma de Células B Grandes Difuso/patología , Proteínas de Neoplasias/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Receptor Notch1/fisiología , Animales , Evolución Clonal , Progresión de la Enfermedad , Activación Enzimática , Regulación Neoplásica de la Expresión Génica , Genes p53 , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/fisiopatología , Linfocitos Infiltrantes de Tumor/inmunología , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/fisiopatología , Ratones , Ratones Endogámicos C57BL , Fenotipo , Fosfoproteínas/fisiología , Proteínas Proto-Oncogénicas c-akt/genética , Receptores de Antígenos de Linfocitos B/inmunología , Transducción de Señal/fisiología , Transcriptoma , Microambiente Tumoral , Proteína p53 Supresora de Tumor/fisiología , Regulación hacia Arriba
4.
Nucleic Acids Res ; 48(15): 8626-8644, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32621609

RESUMEN

The exon junction complex (EJC) is an essential constituent and regulator of spliced messenger ribonucleoprotein particles (mRNPs) in metazoans. As a core component of the EJC, CASC3 was described to be pivotal for EJC-dependent nuclear and cytoplasmic processes. However, recent evidence suggests that CASC3 functions differently from other EJC core proteins. Here, we have established human CASC3 knockout cell lines to elucidate the cellular role of CASC3. In the knockout cells, overall EJC composition and EJC-dependent splicing are unchanged. A transcriptome-wide analysis reveals that hundreds of mRNA isoforms targeted by nonsense-mediated decay (NMD) are upregulated. Mechanistically, recruiting CASC3 to reporter mRNAs by direct tethering or via binding to the EJC stimulates mRNA decay and endonucleolytic cleavage at the termination codon. Building on existing EJC-NMD models, we propose that CASC3 equips the EJC with the persisting ability to communicate with the NMD machinery in the cytoplasm. Collectively, our results characterize CASC3 as a peripheral EJC protein that tailors the transcriptome by promoting the degradation of EJC-dependent NMD substrates.


Asunto(s)
Proteínas de Neoplasias/genética , Degradación de ARNm Mediada por Codón sin Sentido/genética , Empalme del ARN/genética , Proteínas de Unión al ARN/genética , Transcriptoma/genética , Secuencia de Aminoácidos/genética , Núcleo Celular/genética , Exones/genética , Técnicas de Inactivación de Genes , Humanos , ARN Mensajero/genética , Ribonucleoproteínas/genética
5.
J Proteome Res ; 17(10): 3333-3347, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30142977

RESUMEN

Skeletal muscles are composed of heterogeneous collections of fibers with different metabolic profiles. With varied neuronal innervation and fiber-type compositions, each muscle fulfils specific functions and responds differently to stimuli and perturbations. We assessed individual fibers by mass spectrometry to dissect protein changes after loss of neuronal innervation due to section of the sciatic nerve in mice. This proteomics approach enabled us to quantify ∼600 proteins per individual soleus and EDL (extensor digitorum longus) muscle fiber. Expression of myosin heavy chain (MyHC) in individual fibers enabled clustering of specific fiber types; comparison of fibers from control and denervated muscles with the same MyHC expression revealed restricted regulation of a total of 240 proteins in type-I, -IIa, or -IIb fibers 7 days after denervation. The levels of several mitochondrial and proteasomal proteins were significantly altered, indicating rapid adaption of metabolic processes after denervation. Furthermore, we observed fiber-type-specific regulation of proteins involved in calcium ion binding and transport, such as troponins, parvalbumin, and ATP2A2, indicating marked remodeling of muscle contractility after denervation. This study provides novel insight into how different muscle fiber types remodel their proteomes during muscular atrophy.


Asunto(s)
Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Animales , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , Contracción Muscular , Desnervación Muscular , Proteínas Musculares/metabolismo , Músculo Esquelético/inervación , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatología , Cadenas Pesadas de Miosina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
6.
FEBS J ; 288(9): 2911-2929, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33112492

RESUMEN

Cysteine prenylation is a post-translational modification that is used by nature to control crucial biological functions of proteins, such as membrane trafficking, signal transduction, and apoptosis. It mainly occurs in eukaryotic proteins at a C-terminal CaaX box and is mediated by prenyltransferases. Since the discovery of prenylated proteins, various tools have been developed to study the mechanisms of prenyltransferases, as well as to visualize and to identify prenylated proteins. Herein, we introduce cell-permeable peptides bearing a C-terminal CaaX motif based on Ras sequences. We demonstrate that intracellular accumulation of those peptides in different cells is controlled by the presence of their CaaX motif and that they specifically interact with intracellular prenyltransferases. As proof of concept, we further highlight their utilization to alter downstream signaling of Ras proteins, particularly of K-Ras-4B, in pancreatic cancer cells. Application of this strategy holds great promise to better understand and regulate post-translational cysteine prenylation.


Asunto(s)
Transferasas Alquil y Aril/genética , Neoplasias/genética , Prenilación/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Secuencia de Aminoácidos/genética , Cisteína/genética , Regulación Neoplásica de la Expresión Génica/genética , Células HeLa , Humanos , Células MCF-7 , Neoplasias/patología , Péptidos/genética , Péptidos/farmacología , Procesamiento Proteico-Postraduccional/genética , Transducción de Señal/efectos de los fármacos
7.
Mol Cancer Res ; 19(10): 1712-1726, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34183451

RESUMEN

Controlling cell proliferation is critical for organism development, tissue homeostasis, disease, and regeneration. IQGAP3 has been shown to be required for proper cell proliferation and migration, and is associated to a number of cancers. Moreover, its expression is inversely correlated with the overall survival rate in the majority of cancers. Here, we show that IQGAP3 expression is elevated in cervical cancer and that in these cancers IQGAP3 high expression is correlated with an increased lethality. Furthermore, we demonstrate that IQGAP3 is a target of YAP, a regulator of cell cycle gene expression. IQGAP3 knockdown resulted in an increased percentage of HeLa cells in S phase, delayed progression through mitosis, and caused multipolar spindle formation and consequentially aneuploidy. Protein-protein interaction studies revealed that IQGAP3 interacts with MMS19, which is known in Drosophila to permit, by competitive binding to Xpd, Cdk7 to be fully active as a Cdk-activating kinase (CAK). Notably, IQGAP3 knockdown caused decreased MMS19 protein levels and XPD knockdown partially rescued the reduced proliferation rate upon IQGAP3 knockdown. This suggests that IQGAP3 modulates the cell cycle via the MMS19/XPD/CAK axis. Thus, in addition to governing proliferation and migration, IQGAP3 is a critical regulator of mitotic progression and genome stability. IMPLICATIONS: Our data indicate that, while IQGAP3 inhibition might be initially effective in decreasing cancer cell proliferation, this approach harbors the risk to promote aneuploidy and, therefore, the formation of more aggressive cancers.


Asunto(s)
Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Proteínas Activadoras de GTPasa/genética , Inestabilidad Genómica/genética , Factores de Transcripción/genética , Animales , Línea Celular , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Drosophila/genética , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Mitosis/genética , Mapas de Interacción de Proteínas/genética , Transducción de Señal/genética
8.
Blood Cancer Discov ; 2(1): 70-91, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33447829

RESUMEN

Based on gene expression profiles, diffuse large B cell lymphoma (DLBCL) is sub-divided into germinal center B cell-like (GCB) and activated B cell-like (ABC) DLBCL. Two of the most common genomic aberrations in ABC-DLBCL are mutations in MYD88, as well as BCL2 copy number gains. Here, we employ immune phenotyping, RNA-Seq and whole exome sequencing to characterize a Myd88 and Bcl2-driven mouse model of ABC-DLBCL. We show that this model resembles features of human ABC-DLBCL. We further demonstrate an actionable dependence of our murine ABC-DLBCL model on BCL2. This BCL2 dependence was also detectable in human ABC-DLBCL cell lines. Moreover, human ABC-DLBCLs displayed increased PD-L1 expression, compared to GCB-DLBCL. In vivo experiments in our ABC-DLBCL model showed that combined venetoclax and RMP1-14 significantly increased the overall survival of lymphoma bearing animals, indicating that this combination may be a viable option for selected human ABC-DLBCL cases harboring MYD88 and BCL2 aberrations.


Asunto(s)
Linfoma de Células B Grandes Difuso , Factor 88 de Diferenciación Mieloide , Animales , Genes bcl-2 , Centro Germinal/metabolismo , Linfoma de Células B Grandes Difuso/genética , Ratones , Factor 88 de Diferenciación Mieloide/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética
9.
Nat Commun ; 11(1): 1747, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32269263

RESUMEN

Receptor interacting protein kinase 1 (RIPK1) regulates cell death and inflammatory responses downstream of TNFR1 and other receptors, and has been implicated in the pathogenesis of inflammatory and degenerative diseases. RIPK1 kinase activity induces apoptosis and necroptosis, however the mechanisms and phosphorylation events regulating RIPK1-dependent cell death signaling remain poorly understood. Here we show that RIPK1 autophosphorylation at serine 166 plays a critical role for the activation of RIPK1 kinase-dependent apoptosis and necroptosis. Moreover, we show that S166 phosphorylation is required for RIPK1 kinase-dependent pathogenesis of inflammatory pathologies in vivo in four relevant mouse models. Mechanistically, we provide evidence that trans autophosphorylation at S166 modulates RIPK1 kinase activation but is not by itself sufficient to induce cell death. These results show that S166 autophosphorylation licenses RIPK1 kinase activity to induce downstream cell death signaling and inflammation, suggesting that S166 phosphorylation can serve as a reliable biomarker for RIPK1 kinase-dependent pathologies.


Asunto(s)
Apoptosis , Inflamación/metabolismo , Inflamación/patología , Fosfoserina/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Alanina Transaminasa/metabolismo , Animales , Células de la Médula Ósea/citología , Colitis/patología , Genotipo , Hepatitis/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Mutación/genética , Neoplasias/patología , Fosforilación , Sepsis/patología , Piel/patología , Factor de Necrosis Tumoral alfa
10.
Skelet Muscle ; 10(1): 7, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32293536

RESUMEN

BACKGROUND: Skeletal muscles are composed of a heterogeneous collection of fiber types with different physiological adaption in response to a stimulus and disease-related conditions. Each fiber has a specific molecular expression of myosin heavy chain molecules (MyHC). So far, MyHCs are currently the best marker proteins for characterization of individual fiber types, and several proteome profiling studies have helped to dissect the molecular signature of whole muscles and individual fibers. METHODS: Herein, we describe a mass spectrometric workflow to measure skeletal muscle fiber type-specific proteomes. To bypass the limited quantities of protein in single fibers, we developed a Proteomics high-throughput fiber typing (ProFiT) approach enabling profiling of MyHC in single fibers. Aliquots of protein extracts from separated muscle fibers were subjected to capillary LC-MS gradients to profile MyHC isoforms in a 96-well format. Muscle fibers with the same MyHC protein expression were pooled and subjected to proteomic, pulsed-SILAC, and phosphoproteomic analysis. RESULTS: Our fiber type-specific quantitative proteome analysis confirmed the distribution of fiber types in the soleus muscle, substantiates metabolic adaptions in oxidative and glycolytic fibers, and highlighted significant differences between the proteomes of type IIb fibers from different muscle groups, including a differential expression of desmin and actinin-3. A detailed map of the Lys-6 incorporation rates in muscle fibers showed an increased turnover of slow fibers compared to fast fibers. In addition, labeling of mitochondrial respiratory chain complexes revealed a broad range of Lys-6 incorporation rates, depending on the localization of the subunits within distinct complexes. CONCLUSION: Overall, the ProFiT approach provides a versatile tool to rapidly characterize muscle fibers and obtain fiber-specific proteomes for different muscle groups.


Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , Proteómica/métodos , Análisis de la Célula Individual/métodos , Actinina/genética , Actinina/metabolismo , Animales , Células Cultivadas , Desmina/genética , Desmina/metabolismo , Glucólisis , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/citología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Proteoma/genética , Proteoma/metabolismo
11.
Leukemia ; 34(3): 771-786, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31690822

RESUMEN

The proximal DNA damage response kinase ATM is frequently inactivated in human malignancies. Germline mutations in the ATM gene cause Ataxia-telangiectasia (A-T), characterized by cerebellar ataxia and cancer predisposition. Whether ATM deficiency impacts on tumor initiation or also on the maintenance of the malignant state is unclear. Here, we show that Atm reactivation in initially Atm-deficient B- and T cell lymphomas induces tumor regression. We further find a reduced T cell abundance in B cell lymphomas from Atm-defective mice and A-T patients. Using T cell-specific Atm-knockout models, as well as allogeneic transplantation experiments, we pinpoint impaired immune surveillance as a contributor to cancer predisposition and development. Moreover, we demonstrate that Atm-deficient T cells display impaired proliferation capacity upon stimulation, due to replication stress. Altogether, our data indicate that T cell-specific restoration of ATM activity or allogeneic hematopoietic stem cell transplantation may prevent lymphomagenesis in A-T patients.


Asunto(s)
Linfoma/inmunología , Linfocitos T/inmunología , Alelos , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proliferación Celular , Etopósido/farmacología , Trasplante de Células Madre Hematopoyéticas , Linfoma/metabolismo , Ratones , Ratones Noqueados , Linfocitos T/metabolismo , Trasplante Homólogo , Resultado del Tratamiento
12.
Cell Metab ; 27(4): 926-934.e8, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29551588

RESUMEN

The molecular causes of type 2 diabetes (T2D) are not well understood. Both type 1 diabetes (T1D) and T2D are characterized by impaired insulin signaling and hyperglycemia. From analogy to T1D, insulin resistance and hyperglycemia are thought to also play causal roles in T2D. Recent clinical studies, however, found that T2D patients treated to maintain glycemia below the diabetes definition threshold (HbA1c < 6.5%) still develop diabetic complications. This suggests additional insulin- and glucose-independent mechanisms could be involved in T2D progression and/or initiation. T2D patients have elevated levels of the metabolite methylglyoxal (MG). We show here, using Drosophila glyoxalase 1 knockouts, that animals with elevated methylglyoxal recapitulate several core aspects of T2D: insulin resistance, obesity, and hyperglycemia. Thus elevated MG could constitute one root cause of T2D, suggesting that the molecular causes of elevated MG warrant further study.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Piruvaldehído/metabolismo , Animales , Células Cultivadas , Drosophila melanogaster , Hiperglucemia/metabolismo , Resistencia a la Insulina , Lactoilglutatión Liasa/genética , Obesidad/metabolismo
13.
Cell Rep ; 23(5): 1342-1356, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29719249

RESUMEN

Protein aggregates and cytoplasmic vacuolization are major hallmarks of multisystem proteinopathies (MSPs) that lead to muscle weakness. Here, we identify METTL21C as a skeletal muscle-specific lysine methyltransferase. Insertion of a ß-galactosidase cassette into the Mettl21c mouse locus revealed that METTL21C is specifically expressed in MYH7-positive skeletal muscle fibers. Ablation of the Mettl21c gene reduced endurance capacity and led to age-dependent accumulation of autophagic vacuoles in skeletal muscle. Denervation-induced muscle atrophy highlighted further impairments of autophagy-related proteins, including LC3, p62, and cathepsins, in Mettl21c-/- muscles. In addition, we demonstrate that METTL21C interacts with the ATPase p97 (VCP), which is mutated in various human MSP conditions. We reveal that METTL21C trimethylates p97 on the Lys315 residue and found that loss of this modification reduced p97 hexamer formation and ATPase activity in vivo. We conclude that the methyltransferase METTL21C is an important modulator of protein degradation in skeletal muscle under both normal and enhanced protein breakdown conditions.


Asunto(s)
Autofagia , Metiltransferasas/metabolismo , Músculo Esquelético/enzimología , Proteolisis , Proteína que Contiene Valosina/metabolismo , Animales , Masculino , Metilación , Metiltransferasas/genética , Ratones , Ratones Noqueados , Proteína que Contiene Valosina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA