RESUMEN
The joint consensus panel of the European Atherosclerosis Society (EAS) and the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) recently addressed present and future challenges in the laboratory diagnostics of atherogenic lipoproteins. Total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDLC), LDL cholesterol (LDLC), and calculated non-HDLC (=total - HDLC) constitute the primary lipid panel for estimating risk of atherosclerotic cardiovascular disease (ASCVD) and can be measured in the nonfasting state. LDLC is the primary target of lipid-lowering therapies. For on-treatment follow-up, LDLC shall be measured or calculated by the same method to attenuate errors in treatment decisions due to marked between-method variations. Lipoprotein(a) [Lp(a)]-cholesterol is part of measured or calculated LDLC and should be estimated at least once in all patients at risk of ASCVD, especially in those whose LDLC declines poorly upon statin treatment. Residual risk of ASCVD even under optimal LDL-lowering treatment should be also assessed by non-HDLC or apolipoprotein B (apoB), especially in patients with mild-to-moderate hypertriglyceridemia (2-10 mmol/L). Non-HDLC includes the assessment of remnant lipoprotein cholesterol and shall be reported in all standard lipid panels. Additional apoB measurement can detect elevated LDL particle (LDLP) numbers often unidentified on the basis of LDLC alone. Reference intervals of lipids, lipoproteins, and apolipoproteins are reported for European men and women aged 20-100 years. However, laboratories shall flag abnormal lipid values with reference to therapeutic decision thresholds.
Asunto(s)
Aterosclerosis/diagnóstico , LDL-Colesterol/sangre , Lipoproteína(a)/sangre , Apolipoproteínas B/sangre , Aterosclerosis/tratamiento farmacológico , Biomarcadores/sangre , HDL-Colesterol/sangre , Consenso , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Fase Preanalítica , Sociedades MédicasRESUMEN
Aims: To objectively appraise evidence for possible adverse effects of long-term statin therapy on glucose homeostasis, cognitive, renal and hepatic function, and risk for haemorrhagic stroke or cataract. Methods and results: A literature search covering 2000-2017 was performed. The Panel critically appraised the data and agreed by consensus on the categorization of reported adverse effects. Randomized controlled trials (RCTs) and genetic studies show that statin therapy is associated with a modest increase in the risk of new-onset diabetes mellitus (about one per thousand patient-years), generally defined by laboratory findings (glycated haemoglobin ≥6.5); this risk is significantly higher in the metabolic syndrome or prediabetes. Statin treatment does not adversely affect cognitive function, even at very low levels of low-density lipoprotein cholesterol and is not associated with clinically significant deterioration of renal function, or development of cataract. Transient increases in liver enzymes occur in 0.5-2% of patients taking statins but are not clinically relevant; idiosyncratic liver injury due to statins is very rare and causality difficult to prove. The evidence base does not support an increased risk of haemorrhagic stroke in individuals without cerebrovascular disease; a small increase in risk was suggested by the Stroke Prevention by Aggressive Reduction of Cholesterol Levels study in subjects with prior stroke but has not been confirmed in the substantive evidence base of RCTs, cohort studies and case-control studies. Conclusion: Long-term statin treatment is remarkably safe with a low risk of clinically relevant adverse effects as defined above; statin-associated muscle symptoms were discussed in a previous Consensus Statement. Importantly, the established cardiovascular benefits of statin therapy far outweigh the risk of adverse effects.
Asunto(s)
Catarata/inducido químicamente , Hemorragia Cerebral/inducido químicamente , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Trastornos del Conocimiento/inducido químicamente , Glucosa/fisiología , Homeostasis/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Enfermedades Renales/inducido químicamente , Accidente Cerebrovascular/inducido químicamente , HumanosRESUMEN
Liver fibrosis is a pathological scarring response to chronic hepatocellular injury and hepatic stellate cells (HSCs) are key players in this process. PNPLA3 I148M is a common variant robustly associated with liver fibrosis but the mechanisms underlying this association are unknown. We aimed to examine a) the effect of fibrogenic and proliferative stimuli on PNPLA3 levels in HSCs and b) the role of wild type and mutant PNPLA3 overexpression on markers of HSC activation and fibrosis.Here, we show that PNPLA3 is upregulated by the fibrogenic cytokine transforming growth factor-beta (TGF-ß), but not by platelet-derived growth factor (PDGF), and is involved in the TGF-ß-induced reduction in lipid droplets in primary human HSCs. Furthermore, we show that retinol release from human HSCs ex vivo is lower in cells with the loss-of-function PNPLA3 148M compared with 148I wild type protein. Stable overexpression of PNPLA3 148I wild type, but not 148M mutant, in human HSCs (LX-2 cells) induces a reduction in the secretion of matrix metallopeptidase 2 (MMP2), tissue inhibitor of metalloproteinase 1 and 2 (TIMP1 and TIMP2), which is mediated by retinoid metabolism. In conclusion, we show a role for PNPLA3 in HSC activation in response to fibrogenic stimuli. Moreover, we provide evidence to indicate that PNPLA3-mediated retinol release may protect against liver fibrosis by inducing a specific signature of proteins involved in extracellular matrix remodelling.
Asunto(s)
Células Estrelladas Hepáticas/metabolismo , Lipasa/genética , Metabolismo de los Lípidos/genética , Cirrosis Hepática/genética , Proteínas de la Membrana/genética , Vitamina A/administración & dosificación , Regulación de la Expresión Génica/genética , Genotipo , Células Estrelladas Hepáticas/patología , Humanos , Lipasa/biosíntesis , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Metaloproteinasa 2 de la Matriz/biosíntesis , Proteínas de la Membrana/biosíntesis , Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Cultivo Primario de Células , Inhibidor Tisular de Metaloproteinasa-1/biosíntesis , Inhibidor Tisular de Metaloproteinasa-2/biosíntesis , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Vitamina A/metabolismoRESUMEN
BACKGROUND: The European Atherosclerosis Society-European Federation of Clinical Chemistry and Laboratory Medicine Consensus Panel aims to provide recommendations to optimize atherogenic lipoprotein quantification for cardiovascular risk management. CONTENT: We critically examined LDL cholesterol, non-HDL cholesterol, apolipoprotein B (apoB), and LDL particle number assays based on key criteria for medical application of biomarkers. (a) Analytical performance: Discordant LDL cholesterol quantification occurs when LDL cholesterol is measured or calculated with different assays, especially in patients with hypertriglyceridemia >175 mg/dL (2 mmol/L) and low LDL cholesterol concentrations <70 mg/dL (1.8 mmol/L). Increased lipoprotein(a) should be excluded in patients not achieving LDL cholesterol goals with treatment. Non-HDL cholesterol includes the atherogenic risk component of remnant cholesterol and can be calculated in a standard nonfasting lipid panel without additional expense. ApoB more accurately reflects LDL particle number. (b) Clinical performance: LDL cholesterol, non-HDL cholesterol, and apoB are comparable predictors of cardiovascular events in prospective population studies and clinical trials; however, discordance analysis of the markers improves risk prediction by adding remnant cholesterol (included in non-HDL cholesterol) and LDL particle number (with apoB) risk components to LDL cholesterol testing. (c) Clinical and cost-effectiveness: There is no consistent evidence yet that non-HDL cholesterol-, apoB-, or LDL particle-targeted treatment reduces the number of cardiovascular events and healthcare-related costs than treatment targeted to LDL cholesterol. SUMMARY: Follow-up of pre- and on-treatment (measured or calculated) LDL cholesterol concentration in a patient should ideally be performed with the same documented test method. Non-HDL cholesterol (or apoB) should be the secondary treatment target in patients with mild to moderate hypertriglyceridemia, in whom LDL cholesterol measurement or calculation is less accurate and often less predictive of cardiovascular risk. Laboratories should report non-HDL cholesterol in all standard lipid panels.
Asunto(s)
Aterosclerosis/sangre , LDL-Colesterol/sangre , Consenso , Medicina de Precisión , HumanosRESUMEN
AIMS: To appraise the clinical and genetic evidence that low-density lipoproteins (LDLs) cause atherosclerotic cardiovascular disease (ASCVD). METHODS AND RESULTS: We assessed whether the association between LDL and ASCVD fulfils the criteria for causality by evaluating the totality of evidence from genetic studies, prospective epidemiologic cohort studies, Mendelian randomization studies, and randomized trials of LDL-lowering therapies. In clinical studies, plasma LDL burden is usually estimated by determination of plasma LDL cholesterol level (LDL-C). Rare genetic mutations that cause reduced LDL receptor function lead to markedly higher LDL-C and a dose-dependent increase in the risk of ASCVD, whereas rare variants leading to lower LDL-C are associated with a correspondingly lower risk of ASCVD. Separate meta-analyses of over 200 prospective cohort studies, Mendelian randomization studies, and randomized trials including more than 2 million participants with over 20 million person-years of follow-up and over 150 000 cardiovascular events demonstrate a remarkably consistent dose-dependent log-linear association between the absolute magnitude of exposure of the vasculature to LDL-C and the risk of ASCVD; and this effect appears to increase with increasing duration of exposure to LDL-C. Both the naturally randomized genetic studies and the randomized intervention trials consistently demonstrate that any mechanism of lowering plasma LDL particle concentration should reduce the risk of ASCVD events proportional to the absolute reduction in LDL-C and the cumulative duration of exposure to lower LDL-C, provided that the achieved reduction in LDL-C is concordant with the reduction in LDL particle number and that there are no competing deleterious off-target effects. CONCLUSION: Consistent evidence from numerous and multiple different types of clinical and genetic studies unequivocally establishes that LDL causes ASCVD.
Asunto(s)
Aterosclerosis/etiología , Lipoproteínas LDL/fisiología , Anticolesterolemiantes/uso terapéutico , Aterosclerosis/prevención & control , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Consenso , Métodos Epidemiológicos , Ezetimiba/uso terapéutico , Predisposición Genética a la Enfermedad/genética , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Hiperlipidemias/prevención & control , Inhibidores de PCSK9RESUMEN
BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is a leading cause of liver damage and is characterized by steatosis. Genetic factors increase risk for progressive NAFLD. A genome-wide association study showed that the rs641738 C>T variant in the locus that contains the membrane bound O-acyltransferase domain-containing 7 gene (MBOAT7, also called LPIAT1) and transmembrane channel-like 4 gene (TMC4) increased the risk for cirrhosis in alcohol abusers. We investigated whether the MBOAT7-TMC4 is a susceptibility locus for the development and progression of NAFLD. METHODS: We genotyped rs641738 in DNA collected from 3854 participants from the Dallas Heart Study (a multi-ethnic population-based probability sample of Dallas County residents) and 1149 European individuals from the Liver Biopsy Cross-Sectional Cohort. Clinical and anthropometric data were collected, and biochemical and lipidomics were measured in plasma samples from participants. A total of 2736 participants from the Dallas Heart Study also underwent proton magnetic resonance spectroscopy to measure hepatic triglyceride content. In the Liver Biopsy Cross-Sectional Cohort, a total of 1149 individuals underwent liver biopsy to diagnose liver disease and disease severity. RESULTS: The genotype rs641738 at the MBOAT7-TMC4 locus associated with increased hepatic fat content in the 2 cohorts, and with more severe liver damage and increased risk of fibrosis compared with subjects without the variant. MBOAT7, but not TMC4, was found to be highly expressed in the liver. The MBOAT7 rs641738 T allele was associated with lower protein expression in the liver and changes in plasma phosphatidylinositol species consistent with decreased MBOAT7 function. CONCLUSIONS: We provide evidence for an association between the MBOAT7 rs641738 variant and the development and severity of NAFLD in individuals of European descent. This association seems to be mediated by changes in the hepatic phosphatidylinositol acyl-chain remodeling.
Asunto(s)
Acetiltransferasas/genética , Aciltransferasas/genética , Cirrosis Hepática/genética , Proteínas de la Membrana/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Polimorfismo Genético , Población Blanca/genética , Acetiltransferasas/metabolismo , Aciltransferasas/metabolismo , Biopsia , Estudios de Casos y Controles , Estudios Transversales , Europa (Continente)/epidemiología , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/etnología , Cirrosis Hepática/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/etnología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fenotipo , Fosfatidilinositoles/metabolismo , Espectroscopía de Protones por Resonancia Magnética , Factores de Riesgo , Índice de Severidad de la Enfermedad , Texas/epidemiología , Triglicéridos/metabolismoRESUMEN
AIMS: To critically evaluate the clinical implications of the use of non-fasting rather than fasting lipid profiles and to provide guidance for the laboratory reporting of abnormal non-fasting or fasting lipid profiles. METHODS AND RESULTS: Extensive observational data, in which random non-fasting lipid profiles have been compared with those determined under fasting conditions, indicate that the maximal mean changes at 1-6 h after habitual meals are not clinically significant [+0.3 mmol/L (26 mg/dL) for triglycerides; -0.2 mmol/L (8 mg/dL) for total cholesterol; -0.2 mmol/L (8 mg/dL) for LDL cholesterol; +0.2 mmol/L (8 mg/dL) for calculated remnant cholesterol; -0.2 mmol/L (8 mg/dL) for calculated non-HDL cholesterol]; concentrations of HDL cholesterol, apolipoprotein A1, apolipoprotein B, and lipoprotein(a) are not affected by fasting/non-fasting status. In addition, non-fasting and fasting concentrations vary similarly over time and are comparable in the prediction of cardiovascular disease. To improve patient compliance with lipid testing, we therefore recommend the routine use of non-fasting lipid profiles, while fasting sampling may be considered when non-fasting triglycerides >5 mmol/L (440 mg/dL). For non-fasting samples, laboratory reports should flag abnormal concentrations as triglycerides ≥2 mmol/L (175 mg/dL), total cholesterol ≥5 mmol/L (190 mg/dL), LDL cholesterol ≥3 mmol/L (115 mg/dL), calculated remnant cholesterol ≥0.9 mmol/L (35 mg/dL), calculated non-HDL cholesterol ≥3.9 mmol/L (150 mg/dL), HDL cholesterol ≤1 mmol/L (40 mg/dL), apolipoprotein A1 ≤1.25 g/L (125 mg/dL), apolipoprotein B ≥1.0 g/L (100 mg/dL), and lipoprotein(a) ≥50 mg/dL (80th percentile); for fasting samples, abnormal concentrations correspond to triglycerides ≥1.7 mmol/L (150 mg/dL). Life-threatening concentrations require separate referral when triglycerides >10 mmol/L (880 mg/dL) for the risk of pancreatitis, LDL cholesterol >13 mmol/L (500 mg/dL) for homozygous familial hypercholesterolaemia, LDL cholesterol >5 mmol/L (190 mg/dL) for heterozygous familial hypercholesterolaemia, and lipoprotein(a) >150 mg/dL (99th percentile) for very high cardiovascular risk. CONCLUSION: We recommend that non-fasting blood samples be routinely used for the assessment of plasma lipid profiles. Laboratory reports should flag abnormal values on the basis of desirable concentration cut-points. Non-fasting and fasting measurements should be complementary but not mutually exclusive.
Asunto(s)
Ayuno , Aterosclerosis , Enfermedades Cardiovasculares , Química Clínica , Colesterol , Consenso , Humanos , Metabolismo de los Lípidos , Lípidos , Factores de Riesgo , TriglicéridosRESUMEN
Retinoids are micronutrients that are stored as retinyl esters in the retina and hepatic stellate cells (HSCs). HSCs are key players in fibrogenesis in chronic liver diseases. The enzyme responsible for hydrolysis and release of retinyl esters from HSCs is unknown and the relationship between retinoid metabolism and liver disease remains unclear. We hypothesize that the patatin-like phospholipase domain-containing 3 (PNPLA3) protein is involved in retinol metabolism in HSCs. We tested our hypothesis both in primary human HSCs and in a human cohort of subjects with non-alcoholic fatty liver disease (N = 146). Here we show that PNPLA3 is highly expressed in human HSCs. Its expression is regulated by retinol availability and insulin, and increased PNPLA3 expression results in reduced lipid droplet content. PNPLA3 promotes extracellular release of retinol from HSCs in response to insulin. We also show that purified wild-type PNPLA3 hydrolyzes retinyl palmitate into retinol and palmitic acid. Conversely, this enzymatic activity is markedly reduced with purified PNPLA3 148M, a common mutation robustly associated with liver fibrosis and hepatocellular carcinoma development. We also find the PNPLA3 I148M genotype to be an independent (P = 0.009 in a multivariate analysis) determinant of circulating retinol-binding protein 4, a reliable proxy for retinol levels in humans. This study identifies PNPLA3 as a lipase responsible for retinyl-palmitate hydrolysis in HSCs in humans. Importantly, this indicates a potential novel link between HSCs, retinoid metabolism and PNPLA3 in determining the susceptibility to chronic liver disease.
Asunto(s)
Células Estrelladas Hepáticas/enzimología , Lipasa/genética , Proteínas de la Membrana/genética , Enfermedad del Hígado Graso no Alcohólico/enzimología , Vitamina A/análogos & derivados , Adulto , Diterpenos , Femenino , Regulación de la Expresión Génica , Células Hep G2 , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/efectos de los fármacos , Humanos , Insulina/metabolismo , Insulina/farmacología , Lipasa/metabolismo , Gotas Lipídicas/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Persona de Mediana Edad , Mutación , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Ácido Palmítico/metabolismo , Cultivo Primario de Células , Proteínas Plasmáticas de Unión al Retinol/genética , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Ésteres de Retinilo , Vitamina A/metabolismoRESUMEN
AIMS: To critically evaluate the clinical implications of the use of non-fasting rather than fasting lipid profiles and to provide guidance for the laboratory reporting of abnormal non-fasting or fasting lipid profiles. METHODS AND RESULTS: Extensive observational data, in which random non-fasting lipid profiles have been compared with those determined under fasting conditions, indicate that the maximal mean changes at 1-6 h after habitual meals are not clinically significant [+0.3 mmol/L (26 mg/dL) for triglycerides; -0.2 mmol/L (8 mg/dL) for total cholesterol; -0.2 mmol/L (8 mg/dL) for LDL cholesterol; +0.2 mmol/L (8 mg/dL) for calculated remnant cholesterol; -0.2 mmol/L (8 mg/dL) for calculated non-HDL cholesterol]; concentrations of HDL cholesterol, apolipoprotein A1, apolipoprotein B, and lipoprotein(a) are not affected by fasting/non-fasting status. In addition, non-fasting and fasting concentrations vary similarly over time and are comparable in the prediction of cardiovascular disease. To improve patient compliance with lipid testing, we therefore recommend the routine use of non-fasting lipid profiles, whereas fasting sampling may be considered when non-fasting triglycerides are >5 mmol/L (440 mg/dL). For non-fasting samples, laboratory reports should flag abnormal concentrations as triglycerides ≥2 mmol/L (175 mg/dL), total cholesterol ≥5 mmol/L (190 mg/dL), LDL cholesterol ≥3 mmol/L (115 mg/dL), calculated remnant cholesterol ≥0.9 mmol/L (35 mg/dL), calculated non-HDL cholesterol ≥3.9 mmol/L (150 mg/dL), HDL cholesterol ≤1 mmol/L (40 mg/dL), apolipoprotein A1 ≤1.25 g/L (125 mg/dL), apolipoprotein B ≥1.0 g/L (100 mg/dL), and lipoprotein(a) ≥50 mg/dL (80th percentile); for fasting samples, abnormal concentrations correspond to triglycerides ≥1.7 mmol/L (150 mg/dL). Life-threatening concentrations require separate referral for the risk of pancreatitis when triglycerides are >10 mmol/L (880 mg/dL), for homozygous familial hypercholesterolemia when LDL cholesterol is >13 mmol/L (500 mg/dL), for heterozygous familial hypercholesterolemia when LDL cholesterol is >5 mmol/L (190 mg/dL), and for very high cardiovascular risk when lipoprotein(a) >150 mg/dL (99th percentile). CONCLUSIONS: We recommend that non-fasting blood samples be routinely used for the assessment of plasma lipid profiles. Laboratory reports should flag abnormal values on the basis of desirable concentration cutpoints. Non-fasting and fasting measurements should be complementary but not mutually exclusive.
Asunto(s)
Aterosclerosis/sangre , Química Clínica/normas , Técnicas de Laboratorio Clínico/normas , Ayuno/sangre , Lípidos/sangre , Consenso , Europa (Continente) , Humanos , Sociedades MédicasRESUMEN
Statin-associated muscle symptoms (SAMS) are one of the principal reasons for statin non-adherence and/or discontinuation, contributing to adverse cardiovascular outcomes. This European Atherosclerosis Society (EAS) Consensus Panel overviews current understanding of the pathophysiology of statin-associated myopathy, and provides guidance for diagnosis and management of SAMS. Statin-associated myopathy, with significant elevation of serum creatine kinase (CK), is a rare but serious side effect of statins, affecting 1 per 1000 to 1 per 10 000 people on standard statin doses. Statin-associated muscle symptoms cover a broader range of clinical presentations, usually with normal or minimally elevated CK levels, with a prevalence of 7-29% in registries and observational studies. Preclinical studies show that statins decrease mitochondrial function, attenuate energy production, and alter muscle protein degradation, thereby providing a potential link between statins and muscle symptoms; controlled mechanistic and genetic studies in humans are necessary to further understanding. The Panel proposes to identify SAMS by symptoms typical of statin myalgia (i.e. muscle pain or aching) and their temporal association with discontinuation and response to repetitive statin re-challenge. In people with SAMS, the Panel recommends the use of a maximally tolerated statin dose combined with non-statin lipid-lowering therapies to attain recommended low-density lipoprotein cholesterol targets. The Panel recommends a structured work-up to identify individuals with clinically relevant SAMS generally to at least three different statins, so that they can be offered therapeutic regimens to satisfactorily address their cardiovascular risk. Further research into the underlying pathophysiological mechanisms may offer future therapeutic potential.
Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Enfermedades Musculares/inducido químicamente , Proteínas de Transferencia de Ésteres de Colesterol/antagonistas & inhibidores , Terapias Complementarias , Consenso , Creatina Quinasa/metabolismo , Dieta , Predisposición Genética a la Enfermedad/etiología , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacocinética , Hipolipemiantes/uso terapéutico , Mitocondrias Musculares , Enfermedades Mitocondriales/complicaciones , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/terapia , Proproteína Convertasa 9 , Proproteína Convertasas/antagonistas & inhibidores , Factores de Riesgo , Serina EndopeptidasasRESUMEN
Familial hypercholesterolaemia (FH) is a common genetic cause of premature coronary heart disease (CHD). Globally, one baby is born with FH every minute. If diagnosed and treated early in childhood, individuals with FH can have normal life expectancy. This consensus paper aims to improve awareness of the need for early detection and management of FH children. Familial hypercholesterolaemia is diagnosed either on phenotypic criteria, i.e. an elevated low-density lipoprotein cholesterol (LDL-C) level plus a family history of elevated LDL-C, premature coronary artery disease and/or genetic diagnosis, or positive genetic testing. Childhood is the optimal period for discrimination between FH and non-FH using LDL-C screening. An LDL-C ≥5 mmol/L (190 mg/dL), or an LDL-C ≥4 mmol/L (160 mg/dL) with family history of premature CHD and/or high baseline cholesterol in one parent, make the phenotypic diagnosis. If a parent has a genetic defect, the LDL-C cut-off for the child is ≥3.5 mmol/L (130 mg/dL). We recommend cascade screening of families using a combined phenotypic and genotypic strategy. In children, testing is recommended from age 5 years, or earlier if homozygous FH is suspected. A healthy lifestyle and statin treatment (from age 8 to 10 years) are the cornerstones of management of heterozygous FH. Target LDL-C is <3.5 mmol/L (130 mg/dL) if >10 years, or ideally 50% reduction from baseline if 8-10 years, especially with very high LDL-C, elevated lipoprotein(a), a family history of premature CHD or other cardiovascular risk factors, balanced against the long-term risk of treatment side effects. Identifying FH early and optimally lowering LDL-C over the lifespan reduces cumulative LDL-C burden and offers health and socioeconomic benefits. To drive policy change for timely detection and management, we call for further studies in the young. Increased awareness, early identification, and optimal treatment from childhood are critical to adding decades of healthy life for children and adolescents with FH.
Asunto(s)
Hiperlipoproteinemia Tipo II/tratamiento farmacológico , Adolescente , Adulto , Aterosclerosis/diagnóstico , Aterosclerosis/tratamiento farmacológico , Grosor Intima-Media Carotídeo , Niño , Técnicas de Laboratorio Clínico/métodos , Costo de Enfermedad , Consejo , Dieta , Suplementos Dietéticos , Diagnóstico Precoz , Economía Médica , Medicina Basada en la Evidencia , Femenino , Pruebas Genéticas , Heterocigoto , Homocigoto , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Esperanza de Vida , Cumplimiento de la Medicación , Persona de Mediana Edad , Embarazo , Complicaciones del Embarazo/etiología , Factores de Riesgo , Adulto JovenRESUMEN
BACKGROUND & AIMS: Excess hepatic free cholesterol contributes to the pathogenesis of non-alcoholic steatohepatitis, and statins reduce cholesterol synthesis. Aim of this study was to assess whether statin use is associated with histological liver damage related to steatohepatitis. METHODS: The relationship between statin use, genetic risk factors, and liver damage was assessed in a multi-center cohort of 1201 European individuals, who underwent liver biopsy for suspected non-alcoholic steatohepatitis. RESULTS: Statin use was recorded in 107 subjects, and was associated with protection from steatosis, NASH, and fibrosis stage F2-F4, in a dose-dependent manner (adjusted p<0.05 for all). In 100 treated patients matched 1:1 for modality of recruitment, gender, presence of IFG or type 2 diabetes, PNPLA3 I148M risk alleles, TM6SF2 E167K variant, age, and BMI, statin use remained associated with protection from steatosis (OR 0.09, 95% C.I. 0.01-0.32; p=0.004), steatohepatitis (OR 0.25, 95% C.I. 0.13-0.47; p<0.001), and fibrosis stage F2-F4 (OR 0.42, 95% C.I. 0.20-0.8; p=0.017). Results were confirmed in a second analysis, where individuals were matched within recruitment center (p<0.05 for all). The protective effect of statins on steatohepatitis was stronger in subjects not carrying the I148M PNPLA3 risk variant (p=0.02 for interaction), as statins were negatively associated with steatohepatitis in patients negative (p<0.001), but not in those positive for the I148M variant (p=n.s.). CONCLUSIONS: Statin use was associated with protection towards the full spectrum of liver damage in individuals at risk of non-alcoholic steatohepatitis. However, the I148M PNPLA3 risk variant limited this beneficial effect.
Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Adulto , Anciano , Biopsia , Femenino , Humanos , Lipasa/genética , Hígado/patología , Modelos Logísticos , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/patología , RiesgoRESUMEN
AIMS: Homozygous familial hypercholesterolaemia (HoFH) is a rare life-threatening condition characterized by markedly elevated circulating levels of low-density lipoprotein cholesterol (LDL-C) and accelerated, premature atherosclerotic cardiovascular disease (ACVD). Given recent insights into the heterogeneity of genetic defects and clinical phenotype of HoFH, and the availability of new therapeutic options, this Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society (EAS) critically reviewed available data with the aim of providing clinical guidance for the recognition and management of HoFH. METHODS AND RESULTS: Early diagnosis of HoFH and prompt initiation of diet and lipid-lowering therapy are critical. Genetic testing may provide a definitive diagnosis, but if unavailable, markedly elevated LDL-C levels together with cutaneous or tendon xanthomas before 10 years, or untreated elevated LDL-C levels consistent with heterozygous FH in both parents, are suggestive of HoFH. We recommend that patients with suspected HoFH are promptly referred to specialist centres for a comprehensive ACVD evaluation and clinical management. Lifestyle intervention and maximal statin therapy are the mainstays of treatment, ideally started in the first year of life or at an initial diagnosis, often with ezetimibe and other lipid-modifying therapy. As patients rarely achieve LDL-C targets, adjunctive lipoprotein apheresis is recommended where available, preferably started by age 5 and no later than 8 years. The number of therapeutic approaches has increased following approval of lomitapide and mipomersen for HoFH. Given the severity of ACVD, we recommend regular follow-up, including Doppler echocardiographic evaluation of the heart and aorta annually, stress testing and, if available, computed tomography coronary angiography every 5 years, or less if deemed necessary. CONCLUSION: This EAS Consensus Panel highlights the need for early identification of HoFH patients, prompt referral to specialized centres, and early initiation of appropriate treatment. These recommendations offer guidance for a wide spectrum of clinicians who are often the first to identify patients with suspected HoFH.
Asunto(s)
Hiperlipoproteinemia Tipo II/diagnóstico , Anticolesterolemiantes/uso terapéutico , Arco Senil/etiología , Aterosclerosis/diagnóstico , Eliminación de Componentes Sanguíneos/métodos , Enfermedades Cardiovasculares/etiología , LDL-Colesterol/metabolismo , Diagnóstico Diferencial , Diagnóstico Precoz , Frecuencia de los Genes/genética , Heterogeneidad Genética , Homocigoto , Humanos , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/terapia , Trasplante de Hígado/métodos , Mutación/genética , Linaje , Fenotipo , Guías de Práctica Clínica como Asunto , Xantomatosis/etiologíaAsunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticolesterolemiantes/uso terapéutico , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Hiperlipoproteinemia Tipo II/tratamiento farmacológico , Inhibidores de PCSK9 , Adulto , Comités Consultivos , Anticuerpos Monoclonales Humanizados , Femenino , Humanos , Masculino , Persona de Mediana EdadRESUMEN
AIMS: The first aim was to critically evaluate the extent to which familial hypercholesterolaemia (FH) is underdiagnosed and undertreated. The second aim was to provide guidance for screening and treatment of FH, in order to prevent coronary heart disease (CHD). METHODS AND RESULTS: Of the theoretical estimated prevalence of 1/500 for heterozygous FH, <1% are diagnosed in most countries. Recently, direct screening in a Northern European general population diagnosed approximately 1/200 with heterozygous FH. All reported studies document failure to achieve recommended LDL cholesterol targets in a large proportion of individuals with FH, and up to 13-fold increased risk of CHD. Based on prevalences between 1/500 and 1/200, between 14 and 34 million individuals worldwide have FH. We recommend that children, adults, and families should be screened for FH if a person or family member presents with FH, a plasma cholesterol level in an adult ≥8 mmol/L(≥310 mg/dL) or a child ≥6 mmol/L(≥230 mg/dL), premature CHD, tendon xanthomas, or sudden premature cardiac death. In FH, low-density lipoprotein cholesterol targets are <3.5 mmol/L(<135 mg/dL) for children, <2.5 mmol/L(<100 mg/dL) for adults, and <1.8 mmol/L(<70 mg/dL) for adults with known CHD or diabetes. In addition to lifestyle and dietary counselling, treatment priorities are (i) in children, statins, ezetimibe, and bile acid binding resins, and (ii) in adults, maximal potent statin dose, ezetimibe, and bile acid binding resins. Lipoprotein apheresis can be offered in homozygotes and in treatment-resistant heterozygotes with CHD. CONCLUSION: Owing to severe underdiagnosis and undertreatment of FH, there is an urgent worldwide need for diagnostic screening together with early and aggressive treatment of this extremely high-risk condition.
Asunto(s)
Enfermedad Coronaria/prevención & control , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/terapia , Adulto , Anticolesterolemiantes/uso terapéutico , Aterosclerosis/diagnóstico , Niño , Preescolar , LDL-Colesterol/sangre , Análisis Costo-Beneficio , Atención a la Salud , Diagnóstico Precoz , Femenino , Predicción , Heterocigoto , Homocigoto , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Hiperlipoproteinemia Tipo II/genética , Masculino , Persona de Mediana Edad , Mutación/genética , Linaje , Medición de Riesgo , Resultado del TratamientoRESUMEN
BACKGROUND: Childhood obesity is a growing epidemic worldwide, and it is associated with metabolic complications, such as insulin resistance. Recently, a genetic variation (rs7607980) in the COBLL1 gene has been associated with lower insulin resistance in adults. The aim of the study was to investigate if the association between COBLL1 rs7607980 genetic variant and lower insulin resistance was present early in life. METHODS: This sequence variant was genotyped in 878 overweight and obese children (mean age: 10 years) from Sardinia, Italy, from the outpatient clinic of the Pediatric Endocrine Unit, at the Regional Hospital for Microcitaemia in Cagliari. Insulin resistance was assessed by measurement of fasting circulating insulin levels before and after an oral glucose tolerance test and by HOMA-IR. RESULTS: The COBLL1 rs7607980 C allele was associated with lower fasting insulin and HOMA-IR levels (p = 0.002 and p = 0.035, respectively) in overweight and obese children. Importantly, lower insulin levels were also observed 2 h after oral glucose tolerance test in C allele carriers (p = 0.009). CONCLUSIONS: The present study shows for the first time, the association between COBLL1 rs7607980 C allele, lower serum insulin levels and lower insulin resistance in overweight and obese children.
Asunto(s)
Regulación hacia Abajo , Resistencia a la Insulina , Insulina/sangre , Obesidad/genética , Sobrepeso/genética , Polimorfismo de Nucleótido Simple , Factores de Transcripción/genética , Adolescente , Adulto , Alelos , Índice de Masa Corporal , Niño , Preescolar , Estudios de Cohortes , Femenino , Estudios de Asociación Genética , Heterocigoto , Homocigoto , Humanos , Italia , Masculino , Obesidad/sangre , Obesidad/metabolismo , Sobrepeso/sangre , Sobrepeso/metabolismo , Factores de Transcripción/metabolismo , Adulto JovenRESUMEN
A number of plasma lipid parameters have been used to estimate cardiovascular risk and to be targets for treatment to reduce risk. Most risk algorithms are based on total cholesterol (T-C) or low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C), and most intervention trials have targeted the LDL-C levels. Emerging measures, which in some cases may be better for risk calculation and as alternative treatment targets, are apolipoprotein B and non-HDL-C. Other lipid measures that may contribute in risk analysis are triglycerides (TG), lipoprotein(a), and lipoprotein-associated phospholipase A2. The primary treatment target in cardiovascular prevention is LDL-C, and potential alternative targets are apoB and non-HDL-C. In selected individuals at high cardiovascular (CV) risk, TG should be targeted, but HDL-C, Lp(a), and ratios such as LDL-C/HDL-C or apoB/apoAI are not recommended as treatment targets. Lipids should be monitored during titration to targets. Thereafter, lipids should be checked at least once a year or more frequently to improve treatment adherence if indicated. Monitoring of muscle and liver enzymes should be done before the start of treatment. In stable conditions during treatment, the focus should be on clinical symptoms that may alert muscle or liver complications. Routine measurement of CK or ALT is not necessary during treatment with statins.