Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Genomics ; 17: 383, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-27207143

RESUMEN

BACKGROUND: Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection of pregnant pigs can result in congenital infection and ultimately fetal death. Little is known about immune responses to infection at the maternal-fetal interface and in the fetus itself, or the molecular events behind virus transmission and disease progression in the fetus. To investigate these processes, RNA-sequencing of two sites, uterine endothelium with adherent placental tissue and fetal thymus, was performed 21 days post-challenge on four groups of fetuses selected from a large PRRSV challenge experiment of pregnant gilts: control (CON), uninfected (UNINF), infected (INF), and meconium-stained (MEC) (n = 12/group). Transcriptional analyses consisted of multiple contrasts between groups using two approaches: differential gene expression analysis and weighted gene co-expression network analysis (WGCNA). Biological functions, pathways, and regulators enriched for differentially expressed genes or module members were identified through functional annotation analyses. Expression data were validated by reverse transcription quantitative polymerase chain reaction (RTqPCR) carried out for 16 genes of interest. RESULTS: The immune response to infection in endometrium was mainly adaptive in nature, with the most upregulated genes functioning in either humoral or cell-mediated immunity. In contrast, the expression profile of infected fetal thymus revealed a predominantly innate immune response to infection, featuring the upregulation of genes regulated by type I interferon and pro-inflammatory cytokines. Fetal infection was associated with an increase in viral load coupled with a reduction in T cell signaling in the endometrium that could be due to PRRSV-controlled apoptosis of uninfected bystander cells. There was also evidence for a reduction in TWIST1 activity, a transcription factor involved in placental implantation and maturation, which could facilitate virus transmission or fetal pathology through dysregulation of placental function. Finally, results suggested that events within the fetus could also drive fetal pathology. Thymus samples of meconium-stained fetuses exhibited an increase in the expression of pro-inflammatory cytokine and granulocyte genes previously implicated in swine infectious disease pathology. CONCLUSIONS: This study identified major differences in the response to PRRSV infection in the uterine endometrium and fetus at the gene expression level, and provides insight into the molecular basis of virus transmission and disease progression.


Asunto(s)
Feto/metabolismo , Estudio de Asociación del Genoma Completo , Interacciones Huésped-Patógeno/genética , Placenta/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/genética , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino , Transcriptoma , Animales , Análisis por Conglomerados , Endometrio/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Especificidad de Órganos/genética , Embarazo , Reproducibilidad de los Resultados , Transducción de Señal , Porcinos , Carga Viral
2.
Vet Res ; 46: 107, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26407558

RESUMEN

Minimal research has focused on understanding mechanisms underlying porcine reproductive and respiratory syndrome virus (PRRSV) induced reproductive failure. We have completed a large-scale project investigating phenotypic and genotypic predictors of reproductive PRRS severity in which numerous clinical, pathological, immunologic and viral responses were characterized in dams and fetuses. The goal was to determine which phenotypic responses were associated with fetal viral load and death after experimental infection of pregnant gilts with type 2 PRRSV, thereby elucidating mechanisms of reproductive PRRS in third trimester pregnant gilts. The presence of fetal infection and increasing RNA concentration at the maternal-fetal interface were strong predictors of the probability of fetal death, while PRRSV RNA concentration in dam sera and systemic tissues were not associated with the odds of fetal death. Fetal infection and death clustered, indicating that the status of adjacent fetuses is crucial for lateral transmission and fetal outcome. Several systemic immune responses of gilts were associated with fetal outcome and viral load: interferon-α contributed to the probability of fetal death, but absolute numbers of T helper cells in early infection, absolute numbers of myeloid cells over time and interleukin 12 levels appeared protective. These results suggest specific immune responses may either contribute to, or protect against, transplacental virus transmission. The WUR10000125 SNP on chromosome 4, associated with PRRS resilience in nursery pigs, was not associated with reproductive outcome. Whereas past research suggested that fetal death results from events occurring at the maternal-fetal interface, we conclude that viral replication within fetuses and spread of PRRSV to adjacent fetuses are pivotal events in the pathogenesis of reproductive PRRS.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Complicaciones Infecciosas del Embarazo/veterinaria , Timo/virología , Carga Viral/veterinaria , Animales , Femenino , Feto/virología , Embarazo , Complicaciones Infecciosas del Embarazo/virología , ARN Viral/análisis , Porcinos
3.
BMC Genomics ; 11: 455, 2010 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-20670446

RESUMEN

BACKGROUND: Haemophilus parasuis is the causative agent of Glässer's disease in pigs. Currently, little is known about the molecular mechanisms that contribute to disease susceptibility. This study used a porcine oligonucleotide microarray to identify genes that were differentially expressed (DE) in the lungs of colostrum-deprived animals previously characterized as being either 'Fully Resistant' (FR) or 'Susceptible' to infection by H. parasuis in a bacterial challenge experiment. RESULTS: Gene expression profiles of 'FR' and 'Susceptible' animals were obtained by the identification of genes that were differentially expressed between each of these groups and mock-inoculated 'Control' animals. At 24 hours post-inoculation, a total of 21 and 58 DE genes were identified in 'FR' and 'Susceptible' animals respectively. At 72 hours, the numbers of genes were 20 and 347 respectively. 'FR' animals at 24 hours exhibited an increased expression of genes encoding extracellular matrix and TGF-beta signalling components, possibly indicative of tissue repair following the successful early resolution of infection. The gene expression profile of 'FR' animals at 72 hours supported the hypothesis that higher levels of antibacterial activity were responsible for the 'FR' phenotype, possibly due to an increase in natural immunoglobulin A and decrease in signalling by the immunoregulatory transcription factor peroxisome proliferator-activated receptor gamma (PPAR-gamma). The expression profile of 'Susceptible' animals at both time-points was characterized by an imbalance in signalling between pro and anti-inflammatory cytokines and an increased expression of genes involved in biological processes associated with inflammation. These include the pro-inflammatory cytokine genes resistin (RETN) and interleukin 1-beta (IL1B). At 72 hours, a reduction in the expression of genes involved in antigen presentation by both MHC class I and II molecules was observed, which could have contributed to the inability of 'Susceptible' animals to clear infection. CONCLUSIONS: This study is the first to have identified discrete sets of DE genes in pigs of differing susceptibility to H. parasuis infection. Consequently, several candidate genes and pathways for disease resistance or susceptibility phenotypes have been identified. In addition, the findings have shed light on the molecular pathology associated with Glässer's disease.


Asunto(s)
Predisposición Genética a la Enfermedad , Infecciones por Haemophilus/genética , Haemophilus parasuis/fisiología , Enfermedades Pulmonares/genética , Porcinos/genética , Animales , Perfilación de la Expresión Génica
4.
Vet Microbiol ; 209: 114-123, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28292546

RESUMEN

A large challenge experiment using North American porcine reproductive and respiratory virus (PRRSV-2) provided new insights into the pathophysiology of reproductive PRRS. Deep phenotyping of dams and fetuses identified maternal and fetal predictors of PRRS severity and resilience. PRRSV infection resulted in dramatic decreases in all leukocyte subsets by 2days post inoculation. Apoptosis in the interface region was positively related to endometrial vasculitis, viral load in endometrium and fetal thymus, and odds of meconium staining. Viral load at the maternal-fetal interface was a strong predictor of viral load in fetal thymus and odds of fetal death. However, interferon-alpha suppression, a consequence of PRRSV infection, was protective against fetal death. Although the prevalence of fetal lesions was low, their presence in fetal organs and umbilical cord was strongly associated with fetal compromise. Fetal death and viral load clustered in litters suggesting inter-fetal transmission starting from a limited number of index fetuses. Factors associated with index fetal infection are unclear, but large fetuses appear at greater risk. Disease progression in fetuses was associated with an up-regulation of genes associated with inflammation, innate immunity, and cell death signaling, and down-regulation of genes associated with cell cycle and lymphocyte quality. A number of maternal transcriptomic responses were associated with PRRS resilience including higher basal gene expression correlated with platelet function, interferon and pro-inflammatory responses. Twenty-one genomic regions across 10 chromosomes were associated with important traits including fetal viral load, fetal death and viability suggesting that selection for reproductive PRRS resilience may be possible.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/fisiopatología , Animales , Genoma/genética , Síndrome Respiratorio y de la Reproducción Porcina/genética , Síndrome Respiratorio y de la Reproducción Porcina/mortalidad , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Selección Genética , Porcinos/genética
5.
PLoS One ; 11(4): e0153615, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27093427

RESUMEN

Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection of pregnant females causes fetal death and increased piglet mortality, but there is substantial variation in the extent of reproductive pathology between individual dams. This study used RNA-sequencing to characterize the whole blood transcriptional response to type 2 PRRSV in pregnant gilts during the first week of infection (at 0, 2, and 6 days post-inoculation), and attempted to identify gene expression signatures associated with a low or high level of fetal mortality rates (LFM and HFM; n = 8/group) at necropsy, 21 days post-inoculation. The initial response to infection measured at 2 days post-inoculation saw an upregulation of genes involved in innate immunity, such as interferon-stimulated antiviral genes and inflammatory markers, and apoptosis. A concomitant decrease in expression of protein synthesis and T lymphocyte markers was observed. By day 6 the pattern had reversed, with a drop in innate immune signaling and an increase in the expression of genes involved in cell division and T cell signaling. Differentially expressed genes (DEGs) associated with extremes of litter mortality rate were identified at all three time-points. Among the 15 DEGs upregulated in LFM gilts on all three days were several genes involved in platelet function, including integrins ITGA2B and ITGB3, and the chemokine PF4 (CXCL4). LFM gilts exhibited a higher baseline expression of interferon-stimulated and pro-inflammatory genes prior to infection, and of T cell markers two days post-infection, indicative of a more rapid progression of the immune response to PRRSV. This study has increased our knowledge of the early response to PRRSV in the blood of pregnant gilts, and could ultimately lead to the development of a biomarker panel that can be used to predict PRRSV-associated reproductive pathology.


Asunto(s)
Células Sanguíneas/virología , Expresión Génica/genética , Síndrome Respiratorio y de la Reproducción Porcina/genética , Síndrome Respiratorio y de la Reproducción Porcina/mortalidad , Reproducción/genética , Porcinos/virología , Animales , Células Sanguíneas/inmunología , Femenino , Muerte Fetal , Mortalidad Fetal , Inmunidad Innata/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Embarazo , Complicaciones Infecciosas del Embarazo/genética , Complicaciones Infecciosas del Embarazo/inmunología , Complicaciones Infecciosas del Embarazo/mortalidad , Reproducción/inmunología , Porcinos/inmunología , Linfocitos T/inmunología
6.
PLoS One ; 10(9): e0138653, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26393920

RESUMEN

Influenza viruses are a common cause of respiratory disease in swine. Infections range in severity from asymptomatic to causing significant morbidity. The main objective of this study was to compare lung transcriptomic and epigenetic responses to influenza infection in pigs from high or low birth weight litters. The latter is a potential indicator of intrauterine growth restriction, a significant risk factor for prenatal programming effects. Individual pigs from high (HBW) or low birth weight (LBW) litters (n = 17) were inoculated with influenza A virus and euthanized 48 hours later. Lesion severity and viral loads were assessed as previously described. The transcriptional response to infection in LBW and HBW groups (n = 16) was assessed by microarray. A separate analysis of pigs classified as 'Resilient' (RES) or 'Susceptible' (SUS) (n = 6) on the basis of severity of lung pathology was also conducted. Eight genes were confirmed as differentially expressed for the birth weight comparison, including three antiviral genes with lower expression in LBW: ISG15, OAS1, and OAS2 (P<0.05). The promoter region methylation status of these three genes was assessed for each birth weight group, and no differences were found. These expression data are consistent with our previous finding that LBW pigs had less severe lesion scores and a trend towards lower viral titres in lung than the HBW cohort. The SUS v RES comparison identified 91 differentially expressed genes (FDR<0.05) that were enriched with functional annotation terms and pathways associated with inflammation. The cytokine genes IL6, IL8, and CCL2 were all upregulated in SUS pigs, and may have driven disease severity in these animals. In conclusion, this study found no evidence that the transcriptional immune response to influenza was adversely affected by low litter birth weight, but did identify several candidate genes for driving disease pathology.


Asunto(s)
Peso al Nacer , Epigénesis Genética , Pulmón/metabolismo , Infecciones por Orthomyxoviridae/genética , Enfermedades de los Porcinos/genética , Transcriptoma , Animales , Expresión Génica , Inmunidad Innata/genética , Tamaño de la Camada , Pulmón/virología , Infecciones por Orthomyxoviridae/virología , Porcinos , Enfermedades de los Porcinos/virología , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA