Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
medRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38559174

RESUMEN

Whether, and how, co-occurring HIV-1 infection (HIV) and tuberculosis (TB) impact cardiovascular status, especially in adolescents with perinatally acquired HIV (APHIV), have not been examined. We hypothesized that APHIV with previous active TB have worse cardiac efficiency than APHIV without TB, which is mediated by increased inflammation. Arterial elastance (Ea) and ventricular end-systolic elastance (Ees) were assessed by cardiovascular magnetic resonance, and ventriculoarterial coupling (VAC) estimated as Ea/Ees ratio. Inflammation was measured by high sensitivity C-reactive protein (hsCRP). Previous TB in APHIV was associated with reduced cardiac efficiency, related to an altered ventriculoarterial coupling. However, we did not find evidence of hsCRP mediated effects in the association between prior TB and cardiac efficiency. The clinical significance of these findings requires further study, including a wider range of biomarkers of specific immune pathways.

2.
ACS Appl Mater Interfaces ; 16(29): 37623-37640, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38988046

RESUMEN

Conditions affecting the brain are the second leading cause of death globally. One of the main challenges for drugs targeting brain diseases is passing the blood-brain barrier (BBB). Here, the effectiveness of mesoporous silica nanostars (MSiNSs) with two different spike lengths to cross an in vitro BBB multicellular model was evaluated and compared to spherical nanoparticles (MSiNP). A modified sol-gel single-micelle epitaxial growth was used to produce MSiNS, which showed no cytotoxicity or immunogenicity at concentrations of up to 1 µg mL-1 in peripheral blood mononuclear and neuronal cells. The nanostar MSiNS effectively penetrated the BBB model after 24 h, and MSiNS-1 with a shorter spike length (9 ± 2 nm) crossed the in vitro BBB model more rapidly than the MSiNS-2 with longer spikes (18 ± 4 nm) or spherical MSiNP at 96 h, which accumulated in the apical and basolateral sides, respectively. Molecular dynamic simulations illustrated an increase in configurational flexibility of the lipid bilayer during contact with the MSiNS, resulting in wrapping, whereas the MSiNP suppressed membrane fluctuations. This work advances an effective brain drug delivery system based on virus-like shaped MSiNS for the treatment of different brain diseases and a mechanism for their interaction with lipid bilayers.


Asunto(s)
Barrera Hematoencefálica , Dióxido de Silicio , Dióxido de Silicio/química , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Humanos , Porosidad , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Simulación de Dinámica Molecular , Portadores de Fármacos/química , Transporte Biológico , Animales , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo
3.
PLoS One ; 19(3): e0294897, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512960

RESUMEN

BACKGROUND: SARS-CoV-2 variant Omicron rapidly evolved over 2022, causing three waves of infection due to sub-variants BA.1, BA.2 and BA.4/5. We sought to characterise symptoms and viral loads over the course of COVID-19 infection with these sub-variants in otherwise-healthy, vaccinated, non-hospitalised adults, and compared data to infections with the preceding Delta variant of concern (VOC). METHODS: In a prospective, observational cohort study, healthy vaccinated UK adults who reported a positive polymerase chain reaction (PCR) or lateral flow test, self-swabbed on alternate weekdays until day 10. We compared participant-reported symptoms and viral load trajectories between infections caused by VOCs Delta and Omicron (sub-variants BA.1, BA.2 or BA.4/5), and tested for relationships between vaccine dose, symptoms and PCR cycle threshold (Ct) as a proxy for viral load using Chi-squared (χ2) and Wilcoxon tests. RESULTS: 563 infection episodes were reported among 491 participants. Across infection episodes, there was little variation in symptom burden (4 [IQR 3-5] symptoms) and duration (8 [IQR 6-11] days). Whilst symptom profiles differed among infections caused by Delta compared to Omicron sub-variants, symptom profiles were similar between Omicron sub-variants. Anosmia was reported more frequently in Delta infections after 2 doses compared with Omicron sub-variant infections after 3 doses, for example: 42% (25/60) of participants with Delta infection compared to 9% (6/67) with Omicron BA.4/5 (χ2 P < 0.001; OR 7.3 [95% CI 2.7-19.4]). Fever was less common with Delta (20/60 participants; 33%) than Omicron BA.4/5 (39/67; 58%; χ2 P = 0.008; OR 0.4 [CI 0.2-0.7]). Amongst infections with an Omicron sub-variants, symptoms of coryza, fatigue, cough and myalgia predominated. Viral load trajectories and peaks did not differ between Delta, and Omicron, irrespective of symptom severity (including asymptomatic participants), VOC or vaccination status. PCR Ct values were negatively associated with time since vaccination in participants infected with BA.1 (ß = -0.05 (CI -0.10-0.01); P = 0.031); however, this trend was not observed in BA.2 or BA.4/5 infections. CONCLUSION: Our study emphasises both the changing symptom profile of COVID-19 infections in the Omicron era, and ongoing transmission risk of Omicron sub-variants in vaccinated adults. TRIAL REGISTRATION: NCT04750356.


Asunto(s)
COVID-19 , Adulto , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Estudios Prospectivos , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA