Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Imaging Radiat Oncol ; 29: 100537, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38292651

RESUMEN

This study evaluated the robustness of multi-isocenter Volumetric Modulated Arc Therapy Total Body Irradiation dose distribution in the overlapping region between the head-first and feet-first computed tomography scans, considering the longitudinal isocenter shifts recorded during treatment delivery. For 15 out of 22 patients, the dose distribution in the overlapping region fulfilled all three the robustness criteria. The overlapping region dose distribution of the remaining 7 cases fulfilled two robustness criteria. The dose distribution was found to be robust against daily recorded longitudinal isocenter shifts, as a consequence of the patient position verification procedure, of up to 16 mm.

2.
Radiat Oncol ; 18(1): 160, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37784151

RESUMEN

BACKGROUND: In pediatric radiotherapy treatment planning of abdominal tumors, dose constraints to the pancreatic tail/spleen are applied to reduce late toxicity. In this study, an analysis of inter- and intrafraction motion of the pancreatic tail/spleen is performed to estimate the potential benefits of online MRI-guided radiotherapy (MRgRT). MATERIALS AND METHODS: Ten randomly selected neuroblastoma patients (median age: 3.4 years), irradiated with intensity-modulated arc therapy at our department (prescription dose: 21.6/1.8 Gy), were retrospectively evaluated for inter- and intrafraction motion of the pancreatic tail/spleen. Three follow-up MRIs (T2- and T1-weighted ± gadolinium) were rigidly registered to a planning CT (pCT), on the vertebrae around the target volume. The pancreatic tail/spleen were delineated on all MRIs and pCT. Interfraction motion was defined as a center of gravity change between pCT and T2-weighted images in left-right (LR), anterior-posterior (AP) and cranial-caudal (CC) direction. For intrafraction motion analysis, organ position on T1-weighted ± gadolinium was compared to T2-weighted. The clinical radiation plan was used to estimate the dose received by the pancreatic tail/spleen for each position. RESULTS: The median (IQR) interfraction motion was minimal in LR/AP, and largest in CC direction; pancreatic tail 2.5 mm (8.9), and spleen 0.9 mm (3.9). Intrafraction motion was smaller, but showed a similar motion pattern (pancreatic tail, CC: 0.4 mm (1.6); spleen, CC: 0.9 mm (2.8)). The differences of Dmean associated with inter- and intrafraction motions ranged from - 3.5 to 5.8 Gy for the pancreatic tail and - 1.2 to 3.0 Gy for the spleen. In 6 out of 10 patients, movements of the pancreatic tail and spleen were highlighted as potentially clinically significant because of ≥ 1 Gy dose constraint violation. CONCLUSION: Inter- and intrafraction organ motion results into unexpected constrain violations in 60% of a randomly selected neuroblastoma cohort, supporting further prospective exploration of MRgRT.


Asunto(s)
Neuroblastoma , Radioterapia de Intensidad Modulada , Humanos , Niño , Preescolar , Bazo/diagnóstico por imagen , Estudios Retrospectivos , Gadolinio , Movimiento , Radioterapia de Intensidad Modulada/métodos , Imagen por Resonancia Magnética , Neuroblastoma/diagnóstico por imagen , Neuroblastoma/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos
3.
Clin Transl Radiat Oncol ; 18: 54-59, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31341976

RESUMEN

BACKGROUND AND PURPOSE: The promise of the MR-linac is that one can visualize all anatomical changes during the course of radiotherapy and hence adapt the treatment plan in order to always have the optimal treatment. Yet, there is a trade-off to be made between the time spent for adapting the treatment plan against the dosimetric gain. In this work, the various daily plan adaptation methods will be presented and applied on a variety of tumour sites. The aim is to provide an insight in the behavior of the state-of-the-art 1.5 T MRI guided on-line adaptive radiotherapy methods. MATERIALS AND METHODS: To explore the different available plan adaptation workflows and methods, we have simulated online plan adaptation for five cases with varying levels of inter-fraction motion, regions of interest and target sizes: prostate, rectum, esophagus and lymph node oligometastases (single and multiple target). The plans were evaluated based on the clinical dose constraints and the optimization time was measured. RESULTS: The time needed for plan adaptation ranged between 17 and 485 s. More advanced plan adaptation methods generally resulted in more plans that met the clinical dose criteria. Violations were often caused by insufficient PTV coverage or, for the multiple lymph node case, a too high dose to OAR in the vicinity of the PTV. With full online replanning it was possible to create plans that met all clinical dose constraints for all cases. CONCLUSION: Daily full online replanning is the most robust adaptive planning method for Unity. It is feasible for specific sites in clinically acceptable times. Faster methods are available, but before applying these, the specific use cases should be explored dosimetrically.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA