RESUMEN
Spinal muscular atrophy (SMA) has been reported in both Amish and Mennonite (Plain) communities, and a higher incidence has been observed in certain Mennonite communities compared to the general population. There are several therapies for SMA, but all are most effective in pre-symptomatic newborns. To identify couples from the Wisconsin Plain community who are most likely to have a child with SMA, carrier screening is offered via mailed kits with at-home specimen collection. Our survey data about Plain families' perspectives on genetic testing suggest educational materials are needed for individuals providing informed consent with at-home specimen collection. We therefore developed a Plain population-specific educational trifold brochure about SMA carrier screening by incorporating existing medical education strategies and feedback from Plain community members and their health care providers. Along with the brochure, surveys were included in the kits to assess baseline knowledge about SMA carrier screening ("pre-education") as well as improvement in knowledge after reviewing the brochure and cultural appropriateness of the brochure ("post-education"). Fifty-five testing kits were distributed, and 26 survey pairs (pre- and post-education) were returned and analyzed (response rate 47%). Respondents had high baseline knowledge with an average of 5 of 7 questions (71%) answered correctly on the pre-education survey. Knowledge improved after reviewing the brochure as the average score increased to 6.5 of 7 questions (93%) answered correctly. Questions about risks of having an affected child after positive or negative carrier screening showed the most improvement from the pre-education to post-education surveys. Most respondents indicated the brochure was helpful, was easy to understand, and contained the right amount of information. Overall, incorporating elements of existing medical education strategies with feedback from the target population and stakeholders about appropriate language seems to be an effective method for creating beneficial, culturally responsive educational materials for the Plain population.
RESUMEN
Many studies have demonstrated the clinical utility and importance of epilepsy gene panel testing to confirm the specific aetiology of disease, enable appropriate therapeutic interventions, and inform accurate family counselling. Previously, SCN9A gene variants, in particular a c.1921A>T p.(Asn641Tyr) substitution, have been identified as a likely autosomal dominant cause of febrile seizures/febrile seizures plus and other monogenic seizure phenotypes indistinguishable from those associated with SCN1A, leading to inclusion of SCN9A on epilepsy gene testing panels. Here we present serendipitous findings of genetic studies that identify the SCN9A c.1921A>T p.(Asn641Tyr) variant at high frequency in the Amish community in the absence of such seizure phenotypes. Together with findings in UK Biobank these data refute an association of SCN9A with epilepsy, which has important clinical diagnostic implications.
Asunto(s)
Errores Diagnósticos/prevención & control , Epilepsia/diagnóstico , Pruebas Genéticas/métodos , Canal de Sodio Activado por Voltaje NAV1.7/genética , Sustitución de Aminoácidos , Amish/genética , Niño , Preescolar , Epilepsia/genética , Femenino , Estudios de Seguimiento , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Heterocigoto , Humanos , Lactante , Masculino , Mutación , Linaje , Polimorfismo de Nucleótido Simple , Secuenciación del Exoma , WisconsinRESUMEN
BACKGROUND: Familial hypercholesterolemia (FH) due to a founder variant in Apolipoprotein B (ApoBR3500Q) is reported in 12% of the Pennsylvania Amish community. By studying a cohort of ApoBR3500Q heterozygotes and homozygotes, we aimed to characterize the biochemical and cardiac imaging features in children and young adults with a common genetic background and similar lifestyle. METHODS: We employed advanced lipid profile testing, carotid intima media thickness (CIMT), pulse wave velocity (PWV), and peripheral artery tonometry (PAT) to assess atherosclerosis in a cohort of Amish ApoBR3500Q heterozygotes (n = 13), homozygotes (n = 3), and their unaffected, age-matched siblings (n = 9). ApoBR3500Q homozygotes were not included in statistical comparisons. RESULTS: LDL cholesterol (LDL-C) was significantly elevated among ApoBR3500Q heterozygotes compared to sibling controls, though several ApoBR3500Q heterozygotes had LDL-C levels in the normal range. LDL particles (LDL-P), small, dense LDL particles, and ApoB were also significantly elevated among subjects with ApoBR3500Q. Despite these differences in serum lipids and particles, CIMT and PWV were not significantly different between ApoBR3500Q heterozygotes and controls in age-adjusted analysis. CONCLUSIONS: We provide a detailed description of the serum lipids, atherosclerotic plaque burden, vascular stiffness, and endothelial function among children and young adults with FH due to heterozygous ApoBR3500Q. Fasting LDL-C was lower than what is seen with other forms of FH, and even normal in several ApoBR3500Q heterozygotes, emphasizing the importance of cascade genetic testing among related individuals for diagnosis. We found increased number of LDL particles among ApoBR3500Q heterozygotes but an absence of detectable atherosclerosis.
Asunto(s)
Aterosclerosis , Hiperlipoproteinemia Tipo II , Amish/genética , Apolipoproteínas B/genética , Grosor Intima-Media Carotídeo , Niño , LDL-Colesterol , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Mutación , Análisis de la Onda del Pulso , Receptores de LDL/genética , Adulto JovenRESUMEN
Aminoacyl-tRNA synthetases (ARSs) are critical for protein translation. Pathogenic variants of ARSs have been previously associated with peripheral neuropathy and multisystem disease in heterozygotes and homozygotes, respectively. We report seven related children homozygous for a novel mutation in tyrosyl-tRNA synthetase (YARS, c.499C > A, p.Pro167Thr) identified by whole exome sequencing. This variant lies within a highly conserved interface required for protein homodimerization, an essential step in YARS catalytic function. Affected children expressed a more severe phenotype than previously reported, including poor growth, developmental delay, brain dysmyelination, sensorineural hearing loss, nystagmus, progressive cholestatic liver disease, pancreatic insufficiency, hypoglycemia, anemia, intermittent proteinuria, recurrent bloodstream infections and chronic pulmonary disease. Related adults heterozygous for YARS p.Pro167Thr showed no evidence of peripheral neuropathy on electromyography, in contrast to previous reports for other YARS variants. Analysis of YARS p.Pro167Thr in yeast complementation assays revealed a loss-of-function, hypomorphic allele that significantly impaired growth. Recombinant YARS p.Pro167Thr demonstrated normal subcellular localization, but greatly diminished ability to homodimerize in human embryonic kidney cells. This work adds to a rapidly growing body of research emphasizing the importance of ARSs in multisystem disease and significantly expands the allelic and clinical heterogeneity of YARS-associated human disease. A deeper understanding of the role of YARS in human disease may inspire innovative therapies and improve care of affected patients.
Asunto(s)
Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad , Mutación con Pérdida de Función/genética , Tirosina-ARNt Ligasa/genética , Adulto , Dominio Catalítico/genética , Preescolar , Femenino , Enfermedades Genéticas Congénitas/fisiopatología , Pérdida Auditiva Sensorineural/diagnóstico por imagen , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/fisiopatología , Heterocigoto , Homocigoto , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Linaje , Fenotipo , Índice de Severidad de la Enfermedad , Secuenciación del Exoma , Levaduras/genéticaRESUMEN
Glutaric acidemia type 1 (GA1) is a disorder of cerebral organic acid metabolism resulting from biallelic mutations of GCDH. Without treatment, GA1 causes striatal degeneration in >80% of affected children before two years of age. We analyzed clinical, biochemical, and developmental outcomes for 168 genotypically diverse GA1 patients managed at a single center over 31 years, here separated into three treatment cohorts: children in Cohort I (n = 60; DOB 2006-2019) were identified by newborn screening (NBS) and treated prospectively using a standardized protocol that included a lysine-free, arginine-enriched metabolic formula, enteral l-carnitine (100 mg/kgâ¢day), and emergency intravenous (IV) infusions of dextrose, saline, and l-carnitine during illnesses; children in Cohort II (n = 57; DOB 1989-2018) were identified by NBS and treated with natural protein restriction (1.0-1.3 g/kgâ¢day) and emergency IV infusions; children in Cohort III (n = 51; DOB 1973-2016) did not receive NBS or special diet. The incidence of striatal degeneration in Cohorts I, II, and III was 7%, 47%, and 90%, respectively (p < .0001). No neurologic injuries occurred after 19 months of age. Among uninjured children followed prospectively from birth (Cohort I), measures of growth, nutritional sufficiency, motor development, and cognitive function were normal. Adherence to metabolic formula and l-carnitine supplementation in Cohort I declined to 12% and 32%, respectively, by age 7 years. Cessation of strict dietary therapy altered plasma amino acid and carnitine concentrations but resulted in no serious adverse outcomes. In conclusion, neonatal diagnosis of GA1 coupled to management with lysine-free, arginine-enriched metabolic formula and emergency IV infusions during the first two years of life is safe and effective, preventing more than 90% of striatal injuries while supporting normal growth and psychomotor development. The need for dietary interventions and emergency IV therapies beyond early childhood is uncertain.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Encefalopatías Metabólicas/genética , Encéfalo/metabolismo , Cuerpo Estriado/metabolismo , Glutaril-CoA Deshidrogenasa/deficiencia , Glutaril-CoA Deshidrogenasa/genética , Errores Innatos del Metabolismo de los Aminoácidos/dietoterapia , Errores Innatos del Metabolismo de los Aminoácidos/epidemiología , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Encéfalo/patología , Encefalopatías Metabólicas/dietoterapia , Encefalopatías Metabólicas/epidemiología , Encefalopatías Metabólicas/metabolismo , Carnitina/metabolismo , Niño , Preescolar , Cuerpo Estriado/patología , Dieta , Femenino , Glutaril-CoA Deshidrogenasa/metabolismo , Humanos , Lactante , Recién Nacido , Lisina/metabolismo , MasculinoRESUMEN
Over the past three decades, we studied 184 individuals with 174 different molecular variants of branched-chain α-ketoacid dehydrogenase activity, and here delineate essential clinical and biochemical aspects of the maple syrup urine disease (MSUD) phenotype. We collected data about treatment, survival, hospitalization, metabolic control, and liver transplantation from patients with classic (i.e., severe; n = 176), intermediate (n = 6) and intermittent (n = 2) forms of MSUD. A total of 13,589 amino acid profiles were used to analyze leucine tolerance, amino acid homeostasis, estimated cerebral amino acid uptake, quantitative responses to anabolic therapy, and metabolic control after liver transplantation. Standard instruments were used to measure neuropsychiatric outcomes. Despite advances in clinical care, classic MSUD remains a morbid and potentially fatal disorder. Stringent dietary therapy maintains metabolic variables within acceptable limits but is challenging to implement, fails to restore appropriate concentration relationships among circulating amino acids, and does not fully prevent cognitive and psychiatric disabilities. Liver transplantation eliminates the need for a prescription diet and safeguards patients from life-threatening metabolic crises, but is associated with predictable morbidities and does not reverse pre-existing neurological sequelae. There is a critical unmet need for safe and effective disease-modifying therapies for MSUD which can be implemented early in life. The biochemistry and physiology of MSUD and its response to liver transplantation afford key insights into the design of new therapies based on gene replacement or editing.
Asunto(s)
3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/genética , Aminoácidos de Cadena Ramificada/metabolismo , Biomarcadores/sangre , Leucina/sangre , Trasplante de Hígado , Enfermedad de la Orina de Jarabe de Arce/dietoterapia , Enfermedad de la Orina de Jarabe de Arce/terapia , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/metabolismo , Adolescente , Adulto , Niño , Preescolar , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Estudios de Cohortes , Dieta , Femenino , Homocigoto , Humanos , Lactante , Leucina/metabolismo , Masculino , Enfermedad de la Orina de Jarabe de Arce/genética , Enfermedad de la Orina de Jarabe de Arce/metabolismo , Trastornos Mentales/metabolismo , Trastornos Mentales/fisiopatología , Persona de Mediana Edad , FenotipoRESUMEN
PurposeWe integrated whole-exome sequencing (WES) and chromosomal microarray analysis (CMA) into a clinical workflow to serve an endogamous, uninsured, agrarian community.MethodsSeventy-nine probands (newborn to 49.8 years) who presented between 1998 and 2015 remained undiagnosed after biochemical and molecular investigations. We generated WES data for probands and family members and vetted variants through rephenotyping, segregation analyses, and population studies.ResultsThe most common presentation was neurological disease (64%). Seven (9%) probands were diagnosed by CMA. Family WES data were informative for 37 (51%) of the 72 remaining individuals, yielding a specific genetic diagnosis (n = 32) or revealing a novel molecular etiology (n = 5). For five (7%) additional subjects, negative WES decreased the likelihood of genetic disease. Compared to trio analysis, "family" WES (average seven exomes per proband) reduced filtered candidate variants from 22 ± 6 to 5 ± 3 per proband. Nineteen (51%) alleles were de novo and 17 (46%) inherited; the latter added to a population-based diagnostic panel. We found actionable secondary variants in 21 (4.2%) of 502 subjects, all of whom opted to be informed.ConclusionCMA and family-based WES streamline and economize diagnosis of rare genetic disorders, accelerate novel gene discovery, and create new opportunities for community-based screening and prevention in underserved populations.
Asunto(s)
Pruebas Genéticas/estadística & datos numéricos , Genética Médica/métodos , Genética Médica/estadística & datos numéricos , Genómica/estadística & datos numéricos , Disparidades en Atención de Salud/estadística & datos numéricos , Poblaciones Vulnerables , Adolescente , Adulto , Algoritmos , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Genómica/métodos , Humanos , Hallazgos Incidentales , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Linaje , Vigilancia de la Población , Flujo de Trabajo , Adulto JovenRESUMEN
OBJECTIVE: To evaluate clinical outcome of patients with Ellis-van Creveld syndrome (EVC) in whom congenital heart disease (CHD) repair was delayed intentionally to reduce the risk of postoperative respiratory morbidity and mortality. STUDY DESIGN: This retrospective review of 51 EVC c.1886+5G>T homozygotes born between 2005 and 2014 focused on 18 subjects who underwent surgery for CHD, subdivided into early (mean, 1.3 months) vs delayed (mean, 50.1 months) repair. RESULTS: Growth trajectories differed between control subjects and patients with EVC, and CHD was associated with slower weight gain. Relative to controls, infants with EVC had a 40%-75% higher respiratory rates (independent of CHD) accompanied by signs of compensated respiratory acidosis. Blood gases and respiratory rates approached normal values by age 4 years. Hemodynamically significant CHD was present in 23 children, 18 (78%) of whom underwent surgical repair. Surgery was performed at 1.3 ± 1.3 months for children born between 2005 and 2009 (n = 9) and 50.1 ± 40.2 months (P = .009) for children born between 2010 and 2014 (n = 9). The latter had shorter postoperative mechanical ventilation (1.1 ± 2.4 days vs 49.6 ± 57.1 days; P = .075), shorter intensive care duration of stay (16 ± 24 days vs 48.6 ± 44.2 days; P = .155), and no postoperative tracheostomies (vs 60%; P = .028) or deaths (vs 44%; P = .082). CONCLUSION: Among children with EVC and possibly other short-rib thoracic dysplasias, delayed surgical repair of CHD reduces postoperative morbidity and improves survival. Respiratory rate serves as a simple indicator for optimal timing of surgical repair.
Asunto(s)
Síndrome de Ellis-Van Creveld , Cardiopatías Congénitas/cirugía , Preescolar , Síndrome de Ellis-Van Creveld/mortalidad , Síndrome de Ellis-Van Creveld/fisiopatología , Femenino , Estudios de Seguimiento , Cardiopatías Congénitas/mortalidad , Cardiopatías Congénitas/fisiopatología , Humanos , Lactante , Recién Nacido , Masculino , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/prevención & control , Frecuencia Respiratoria , Estudios Retrospectivos , Toracotomía , Factores de Tiempo , Resultado del Tratamiento , Aumento de PesoRESUMEN
Amish and Mennonite (Plain) communities have increased prevalence of many recessively inherited disorders due to founder variants that can be identified using next-generation sequencing (NGS). We assessed newborn screening (NBS) utilization, prior genetic testing, and perceptions of genetic testing among Wisconsin Plain communities to guide implementation and utilization of a population-specific NGS gene panel testing. A mailed paper survey (N = 959) of demographics, NBS utilization, prior genetic testing, and preferences for categorical genetic disorder and defined clinical context testing was developed. Overall response rate was 39% (N = 378; 183 Amish, 193 Mennonite; 2 not Amish/Mennonite). Mennonites were more likely to respond in favor of carrier screening for metabolic disorders and other surgical conditions and less likely to respond in favor of asymptomatic testing for neurologic disorders and lethal disorders compared to Amish. Reported utilization of NBS was positively associated with stated interest in genetic testing for an asymptomatic child. Reported prior genetic testing was positively associated with stated interest in carrier screening and negatively associated with testing a symptomatic child. Although Plain community members share many common outward characteristics, our survey responses suggest diversity in their views of genetic testing and support laboratory methods that can be flexible to varied needs of individuals.
RESUMEN
The Plain Community (PC) is a medically underserved group found predominantly in the northeastern and midwestern USA. Due to the community's founder population with few converts and infrequent outside marriage, metabolic and genetic disorders are more prevalent. Individuals in the PC experience geographic, financial, and cultural barriers when accessing healthcare. In Wisconsin, a collaboration between clinicians at a rural community health clinic and the academic medical clinic established an outreach clinic for medical genetics located in a rural location closer to a Wisconsin PC which consists of both Amish and Mennonite communities. However, patients with acute medical concerns requiring more urgent genetics care must travel to the academic center. Telemedicine (TM) is a technology that increases access to healthcare, often reducing financial and travel barriers. Using survey tools, we explored whether TM could be used to provide genetic services to individuals in the Wisconsin PC at an outreach clinic. Results indicated that 36% of survey participants responded favorably to receiving services by TM at a clinic designed for the PC. Members of the Mennonite community are significantly more likely to consider receiving services via TM than those of the Amish community. The results of the surveys indicate potential utility of TM at the outreach clinic as alternative way to improve access to genetic and other subspecialty services for the PC.
RESUMEN
Oculocutaneous albinism type 1 (OCA1) is caused by pathogenic variants in the TYR (tyrosinase) gene which encodes the critical and rate-limiting enzyme in melanin synthesis. It is the most common OCA subtype found in Caucasians, accounting for ~50% of cases worldwide. The apparent 'missing heritability' in OCA is well described, with ~25-30% of clinically diagnosed individuals lacking two clearly pathogenic variants. Here we undertook empowered genetic studies in an extensive multigenerational Amish family, alongside a review of previously published literature, a retrospective analysis of in-house datasets, and tyrosinase activity studies. Together this provides irrefutable evidence of the pathogenicity of two common TYR variants, p.(Ser192Tyr) and p.(Arg402Gln) when inherited in cis alongside a pathogenic TYR variant in trans. We also show that homozygosity for the p.(Ser192Tyr)/p.(Arg402Gln) TYR haplotype results in a very mild, but fully penetrant, albinism phenotype. Together these data underscore the importance of including the TYR p.(Ser192Tyr)/p.(Arg402Gln) in cis haplotype as a pathogenic allele causative of OCA, which would likely increase molecular diagnoses in this missing heritability albinism cohort by 25-50%.
RESUMEN
BACKGROUND AND OBJECTIVES: Conventional timing of newborn pulse oximetry screening is not ideal for infants born out-of-hospital. We implemented a newborn pulse oximetry screen to align with typical midwifery care and measure its efficacy at detecting critical congenital heart disease. METHODS: Cohort study of expectant mothers and infants mainly from the Amish and Mennonite (Plain) communities with limited prenatal ultrasound use. Newborns were screened at 1 to 4 hours of life ("early screen") and 24 to 48 hours of life ("late screen"). Newborns were followed up to 6 weeks after delivery to report outcomes. Early screen, late screen, and combined results were analyzed on the basis of strict algorithm interpretation ("algorithm") and the midwife's interpretation in the field ("field") because these did not correspond in all cases. RESULTS: Pulse oximetry screening in 3019 newborns (85% Plain; 50% male; 43% with a prenatal ultrasound) detected critical congenital heart disease in 3 infants. Sensitivity of combined early and late screen was 66.7% (95% confidence interval [CI] 9.4% to 99.2%) for algorithm interpretation and 100% (95% CI 29.2% to 100%) for field interpretation. Positive predictive value was similar for the field interpretation (8.8%; 95% CI 1.9% to 23.7%) and algorithm interpretation (5.4%; 95% CI 0.7% to 18.2%). False-positive rates were ≤1.2% for both algorithm and field interpretations. Other pathologies (noncritical congenital heart disease, pulmonary issues, or infection) were reported in 12 of the false-positive cases. CONCLUSIONS: Newborn pulse oximetry can be adapted to the out-of-hospital setting without compromising sensitivity or prohibitively increasing false-positive rates.
Asunto(s)
Cardiopatías Congénitas/diagnóstico , Parto Domiciliario , Partería , Tamizaje Neonatal , Oximetría , Algoritmos , Estudios de Cohortes , Reacciones Falso Negativas , Reacciones Falso Positivas , Femenino , Humanos , Recién Nacido , Masculino , Pennsylvania , Sensibilidad y Especificidad , Factores de TiempoRESUMEN
Metabolic disorders are disruptions in nutrient metabolism or basic cellular processes that can result in severe neonatal crisis. Basic laboratory findings may reveal hypoglycemia, acidosis, or hyperammonemia, but may also be normal even in infants with severe metabolic decompensation. Breast milk or milk-based formulas often contain the nutrient that precipitates the metabolic crisis and may need to be held during acute illness. Instead, infants with suspected metabolic disorders should be administered a high glucose infusion rate with isotonic fluids to reverse catabolism. Combined advanced biochemical and molecular testing is often needed to identify specific metabolic disorders and guide ongoing treatment.
Asunto(s)
Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/terapia , Diagnóstico Diferencial , Humanos , Recién Nacido , Tamizaje NeonatalRESUMEN
Chronic kidney disease results in a reduction in 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) synthesis and an accumulation of phosphorus in the blood, leading to secondary hyperparathyroidism and renal osteodystrophy. Vitamin D analogs that retain the ability to suppress PTH but that are less calcemic and phosphatemic than the native hormone are preferred therapies for secondary hyperparathyroidism. However, even the most favored analog currently approved for the treatment of chronic kidney disease patients, i.e. 1,25-dihydroxy-19-nor-vitamin D2 (19-nor-D2, Zemplar), still retains some ability to stimulate intestinal absorption of calcium and phosphate. A recently described analog of vitamin D3, 2-methylene-19-nor-20(S)-1alpha-hydroxy-bishomopregnacalciferol [20(S)-2MbisP], suppresses PTH levels, but is unable to stimulate intestinal calcium absorption or bone resorption in rats. The present study shows that 20(S)-2MbisP is unable to stimulate intestinal phosphate absorption at levels known to suppress PTH secretion. Further, 19-nor-vitamin D2 under the same circumstances does stimulate phosphate absorption. Thus, 2MbisP has significant potential in the management of secondary hyperparathyroidism of renal failure.
Asunto(s)
Dihidroxicolecalciferoles/farmacología , Absorción Intestinal , Hormona Paratiroidea/antagonistas & inhibidores , Fosfatos/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Masculino , Ratas , Ratas Sprague-DawleyRESUMEN
Reduction of blood phosphorus is a critical component in the management of secondary hyperparathyroidism in chronic kidney disease patients. In addition to dialysis treatment and dietary phosphorus restriction, oral phosphate binders are often consumed with meals to reduce the availability of food phosphorus. Several oral phosphate binders are approved for use in chronic kidney disease patients, but all have practical limitations because of toxicity, poor efficacy, or high cost. Using an in vivo method to measure intestinal phosphate absorption in rats using radiolabeled phosphate, we found that first-, second-, third-, and fifth-generation diaminobutane dendrimer compounds, DAB-4-Cl, DAB-8-Cl, DAB-16-Cl, and DAB-64-Cl, respectively, drastically reduce the absorption of inorganic phosphate in a dose-dependent manner. To avoid complications of metabolic acidosis caused by hydrochloride salts, an acetate salt, DAB-9-AcOH, was prepared and shown to be equally effective at binding radiolabeled phosphate as DAB-8-Cl. DAB-8-AcOH was further shown to increase fecal phosphorus and decrease serum phosphorus in a dose-dependent manner when fed to rats. These data suggest that dendrimer compounds are of great potential use in the binding of food phosphate for the management of hyperparathyroidism secondary to chronic kidney disease.