Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Genes Dev ; 26(18): 2103-17, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22987640

RESUMEN

How muscle diversity is generated in the vertebrate body is poorly understood. In the limb, dorsal and ventral muscle masses constitute the first myogenic diversification, as each gives rise to distinct muscles. Myogenesis initiates after muscle precursor cells (MPCs) have migrated from the somites to the limb bud and populated the prospective muscle masses. Here, we show that Sonic hedgehog (Shh) from the zone of polarizing activity (ZPA) drives myogenesis specifically within the ventral muscle mass. Shh directly induces ventral MPCs to initiate Myf5 transcription and myogenesis through essential Gli-binding sites located in the Myf5 limb enhancer. In the absence of Shh signaling, myogenesis is delayed, MPCs fail to migrate distally, and ventral paw muscles fail to form. Thus, Shh production in the limb ZPA is essential for the spatiotemporal control of myogenesis and coordinates muscle and skeletal development by acting directly to regulate the formation of specific ventral muscles.


Asunto(s)
Extremidades/embriología , Proteínas Hedgehog/metabolismo , Desarrollo de Músculos/genética , Músculo Esquelético/embriología , Mioblastos/citología , Animales , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Esbozos de los Miembros/citología , Esbozos de los Miembros/embriología , Ratones , Ratones Transgénicos , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Transducción de Señal
2.
Dev Biol ; 431(2): 321-335, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28887016

RESUMEN

Balancing the number of stem cells and their progeny is crucial for tissue development and repair. Here we examine how cell numbers and overall muscle size are tightly regulated during zebrafish somitic muscle development. Muscle stem/precursor cell (MPCs) expressing Pax7 are initially located in the dermomyotome (DM) external cell layer, adopt a highly stereotypical distribution and thereafter a proportion of MPCs migrate into the myotome. Regional variations in the proliferation and terminal differentiation of MPCs contribute to growth of the myotome. To probe the robustness of muscle size control and spatiotemporal regulation of MPCs, we compared the behaviour of wild type (wt) MPCs with those in mutant zebrafish that lack the muscle regulatory factor Myod. Myodfh261 mutants form one third fewer multinucleate fast muscle fibres than wt and show a significant expansion of the Pax7+ MPC population in the DM. Subsequently, myodfh261 mutant fibres generate more cytoplasm per nucleus, leading to recovery of muscle bulk. In addition, relative to wt siblings, there is an increased number of MPCs in myodfh261 mutants and these migrate prematurely into the myotome, differentiate and contribute to the hypertrophy of existing fibres. Thus, homeostatic reduction of the excess MPCs returns their number to normal levels, but fibre numbers remain low. The GSK3 antagonist BIO prevents MPC migration into the deep myotome, suggesting that canonical Wnt pathway activation maintains the DM in zebrafish, as in amniotes. BIO does not, however, block recovery of the myodfh261 mutant myotome, indicating that homeostasis acts on fibre intrinsic growth to maintain muscle bulk. The findings suggest the existence of a critical window for early fast fibre formation followed by a period in which homeostatic mechanisms regulate myotome growth by controlling fibre size. The feedback controls we reveal in muscle help explain the extremely precise grading of myotome size along the body axis irrespective of fish size, nutrition and genetic variation and may form a paradigm for wider matching of organ size.


Asunto(s)
Desarrollo de Músculos , Fibras Musculares Esqueléticas/metabolismo , Somitos/metabolismo , Pez Cebra/embriología , Animales , Diferenciación Celular , Movimiento Celular , Núcleo Celular/metabolismo , Proliferación Celular , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Larva/metabolismo , Fibras Musculares Esqueléticas/citología , Mutación/genética , Factor de Transcripción PAX7/metabolismo , Somitos/embriología , Proteínas de Pez Cebra/metabolismo
3.
Development ; 140(14): 2972-84, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23760954

RESUMEN

Striated muscles that enable mouth opening and swallowing during feeding are essential for efficient energy acquisition, and are likely to have played a fundamental role in the success of early jawed vertebrates. The developmental origins and genetic requirements of these muscles are uncertain. Here, we determine by indelible lineage tracing in mouse that fibres of sternohyoid muscle (SHM), which is essential for mouth opening during feeding, and oesophageal striated muscle (OSM), which is crucial for voluntary swallowing, arise from Pax3-expressing somite cells. In vivo Kaede lineage tracing in zebrafish reveals the migratory route of cells from the anteriormost somites to OSM and SHM destinations. Expression of pax3b, a zebrafish duplicate of Pax3, is restricted to the hypaxial region of anterior somites that generate migratory muscle precursors (MMPs), suggesting that Pax3b plays a role in generating OSM and SHM. Indeed, loss of pax3b function led to defective MMP migration and OSM formation, disorganised SHM differentiation, and inefficient ingestion and swallowing of microspheres. Together, our data demonstrate Pax3-expressing somite cells as a source of OSM and SHM fibres, and highlight a conserved role of Pax3 genes in the genesis of these feeding muscles of vertebrates.


Asunto(s)
Esófago/embriología , Maxilares/embriología , Desarrollo de Músculos , Músculo Estriado/embriología , Factores de Transcripción Paired Box/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Movimiento Celular , Deglución , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Esófago/citología , Feto/citología , Feto/metabolismo , Maxilares/citología , Ratones , Músculo Estriado/citología , Músculo Estriado/metabolismo , Proteína MioD/metabolismo , Factor 5 Regulador Miogénico/metabolismo , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/genética , Somitos/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
4.
PLoS Biol ; 11(10): e1001679, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24143132

RESUMEN

Muscle fiber size is activity-dependent and clinically important in ageing, bed-rest, and cachexia, where muscle weakening leads to disability, prolonged recovery times, and increased costs. Inactivity causes muscle wasting by triggering protein degradation and may simultaneously prevent protein synthesis. During development, muscle tissue grows by several mechanisms, including hypertrophy of existing fibers. As in other tissues, the TOR pathway plays a key role in promoting muscle protein synthesis by inhibition of eIF4EBPs (eukaryotic Initiation Factor 4E Binding Proteins), regulators of the translational initiation. Here, we tested the role of TOR-eIF4EBP in a novel zebrafish muscle inactivity model. Inactivity triggered up-regulation of eIF4EBP3L (a zebrafish homolog of eIF4EBP3) and diminished myosin and actin content, myofibrilogenesis, and fiber growth. The changes were accompanied by preferential reduction of the muscle transcription factor Mef2c, relative to Myod and Vinculin. Polysomal fractionation showed that Mef2c decrease was due to reduced translation of mef2ca mRNA. Loss of Mef2ca function reduced normal muscle growth and diminished the reduction in growth caused by inactivity. We identify eIF4EBP3L as a key regulator of Mef2c translation and protein level following inactivity; blocking eIF4EBP3L function increased Mef2ca translation. Such blockade also prevented the decline in mef2ca translation and level of Mef2c and slow myosin heavy chain proteins caused by inactivity. Conversely, overexpression of active eIF4EBP3L mimicked inactivity by decreasing the proportion of mef2ca mRNA in polysomes, the levels of Mef2c and slow myosin heavy chain, and myofibril content. Inhibiting the TOR pathway without the increase in eIF4EBP3L had a lesser effect on myofibrilogenesis and muscle size. These findings identify eIF4EBP3L as a key TOR-dependent regulator of muscle fiber size in response to activity. We suggest that by selectively inhibiting translational initiation of mef2ca and other mRNAs, eIF4EBP3L reprograms the translational profile of muscle, enabling it to adjust to new environmental conditions.


Asunto(s)
Proteínas Portadoras/metabolismo , Factores de Transcripción MEF2/genética , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Factores Reguladores Miogénicos/genética , Iniciación de la Cadena Peptídica Traduccional/genética , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/crecimiento & desarrollo , Animales , Proteínas Portadoras/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Factores de Transcripción MEF2/metabolismo , Modelos Biológicos , Miofibrillas/metabolismo , Factores Reguladores Miogénicos/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Regulación hacia Arriba , Pez Cebra/genética , Proteínas de Pez Cebra/genética
5.
Dev Biol ; 358(1): 102-12, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21798255

RESUMEN

Myogenic regulatory factors of the myod family (MRFs) are transcription factors essential for mammalian skeletal myogenesis. Here we show that a mutation in the zebrafish myod gene delays and reduces early somitic and pectoral fin myogenesis, reduces miR-206 expression, and leads to a persistent reduction in somite size until at least the independent feeding stage. A mutation in myog, encoding a second MRF, has little obvious phenotype at early stages, but exacerbates the loss of somitic muscle caused by lack of Myod. Mutation of both myod and myf5 ablates all skeletal muscle. Haploinsufficiency of myod leads to reduced embryonic somite muscle bulk. Lack of Myod causes a severe reduction in cranial musculature, ablating most muscles including the protractor pectoralis, a putative cucullaris homologue. This phenotype is accompanied by a severe dysmorphology of the cartilaginous skeleton and failure of maturation of several cranial bones, including the opercle. As myod expression is restricted to myogenic cells, the data show that myogenesis is essential for proper skeletogenesis in the head.


Asunto(s)
Huesos/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Haploinsuficiencia/genética , Desarrollo de Músculos/fisiología , Proteína MioD/genética , Cráneo/embriología , Pez Cebra/embriología , Animales , Cartílago/embriología , Haploinsuficiencia/fisiología , Inmunohistoquímica , Hibridación in Situ , Larva/fisiología , Músculo Esquelético/embriología , Mutación/genética , Proteína MioD/metabolismo , Extremidad Superior/embriología , Pez Cebra/genética
6.
Brain Res ; 1172: 145-51, 2007 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-17765211

RESUMEN

The neural correlates of motor execution in Amyotrophic Lateral Sclerosis (ALS) are challenging to investigate due to muscle weakness. Alternatives to traditional motor execution paradigms are therefore of great interest. This study tested the hypothesis that patients with Amyotrophic Lateral Sclerosis (ALS) would show increased cortical activation during motor imagery compared to healthy controls, as seen in studies of motor execution. Functional MRI was used to measure activation during a block design paradigm contrasting imagery of right hand movements against rest in 16 patients with ALS and 17 age-matched healthy controls. Patients with ALS showed reduced activation during motor imagery in the left inferior parietal lobule, and in the anterior cingulate gyrus and medial pre-frontal cortex. This reduction in cortical activation during motor imagery contrasts with the pattern seen during motor execution. This may represent the disruption of normal motor imagery networks by ALS pathology outside the primary motor cortex.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Mapeo Encefálico , Corteza Cerebral/fisiopatología , Imaginación , Desempeño Psicomotor/fisiología , Adulto , Anciano , Análisis de Varianza , Estudios de Casos y Controles , Corteza Cerebral/irrigación sanguínea , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Oxígeno/sangre
7.
Amyotroph Lateral Scler ; 8(6): 348-55, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17924235

RESUMEN

In this study, we investigated whether diffusion tensor MRI (DTI) could detect progressive corticospinal tract degeneration in amyotrophic lateral sclerosis (ALS) and whether changes in diffusion variables reflected clinical deterioration. Twenty-three ALS patients and 25 healthy volunteers underwent whole brain DTI. Patients and a subset (n = 12) of controls returned for a second scan. Clinical measures of disease severity were assessed in the ALS group. Changes in fractional anisotropy (FA) and mean diffusivity (MD) were measured along the corticospinal tract using a region of interest approach. Adequate DTI data were available in 11 ALS patients and 11 controls at two time points. FA and MD differed significantly between ALS patients and controls at both time points, but neither changed significantly over time, while global measures of disease severity in patients increased with time. Although we confirmed that DTI detects corticospinal tract damage in ALS, there were no significant changes in diffusion measures over time. The sensitivity of DTI may be improved by advanced data analysis techniques, although the high dropout rate suggests that use of MRI as a biomarker in ALS may be restricted to earlier stages of disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Imagen de Difusión por Resonancia Magnética/métodos , Adulto , Anciano , Imagen de Difusión por Resonancia Magnética/tendencias , Femenino , Estudios de Seguimiento , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Tractos Piramidales/metabolismo , Tractos Piramidales/patología
8.
Arch Neurol ; 66(1): 109-15, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19139308

RESUMEN

BACKGROUND: The basis of heterogeneity in the clinical presentation and rate of progression of amyotrophic lateral sclerosis (ALS) is poorly understood. OBJECTIVES: To use diffusion tensor imaging as a measure of axonal pathologic features in vivo in ALS and to compare a homogeneous form of familial ALS (homozygous D90A SOD1 [superoxide dismutase 1]) with sporadic ALS. DESIGN: Cross-sectional diffusion tensor imaging study. SETTING: Tertiary referral neurology clinic. PATIENTS: Twenty patients with sporadic ALS, 6 patients with homozygous D90A SOD1 ALS, and 21 healthy control subjects. MAIN OUTCOME MEASURE: Fractional anisotropy in cerebral white matter. RESULTS: Patients with homozygous D90A SOD1 ALS showed less extensive pathologic white matter in motor and extramotor pathways compared with patients with sporadic ALS, despite similar disease severity assessed clinically using a standard functional rating scale. Fractional anisotropy correlated with clinical measures of severity and upper motor neuron involvement. CONCLUSION: In vivo diffusion tensor imaging measures demonstrate differences in white matter degeneration between sporadic ALS and a unique familial form of the disease, indicating that genotype influences the distribution of cerebral pathologic features in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Mapeo Encefálico/métodos , Encéfalo/patología , Imagen de Difusión por Resonancia Magnética/métodos , Superóxido Dismutasa/genética , Adulto , Anciano , Esclerosis Amiotrófica Lateral/fisiopatología , Encéfalo/enzimología , Encéfalo/fisiopatología , Estudios Transversales , Diagnóstico Diferencial , Progresión de la Enfermedad , Vías Eferentes/patología , Vías Eferentes/fisiopatología , Femenino , Marcadores Genéticos/genética , Predisposición Genética a la Enfermedad/genética , Genotipo , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Neuronas Motoras/patología , Fibras Nerviosas Mielínicas/patología , Valor Predictivo de las Pruebas , Superóxido Dismutasa-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA