Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 33(5): 1574-1593, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33624824

RESUMEN

In contrast to climacteric fruits such as tomato, the knowledge on key regulatory genes controlling the ripening of strawberry, a nonclimacteric fruit, is still limited. NAC transcription factors (TFs) mediate different developmental processes in plants. Here, we identified and characterized Ripening Inducing Factor (FaRIF), a NAC TF that is highly expressed and induced in strawberry receptacles during ripening. Functional analyses based on stable transgenic lines aimed at silencing FaRIF by RNA interference, either from a constitutive promoter or the ripe receptacle-specific EXP2 promoter, as well as overexpression lines showed that FaRIF controls critical ripening-related processes such as fruit softening and pigment and sugar accumulation. Physiological, metabolome, and transcriptome analyses of receptacles of FaRIF-silenced and overexpression lines point to FaRIF as a key regulator of strawberry fruit ripening from early developmental stages, controlling abscisic acid biosynthesis and signaling, cell-wall degradation, and modification, the phenylpropanoid pathway, volatiles production, and the balance of the aerobic/anaerobic metabolism. FaRIF is therefore a target to be modified/edited to control the quality of strawberry fruits.


Asunto(s)
Fragaria/crecimiento & desarrollo , Fragaria/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Antocianinas/metabolismo , Pared Celular/metabolismo , Metabolismo Energético , Fermentación , Fragaria/genética , Regulación de la Expresión Génica de las Plantas , Glucólisis , Lignina/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Propanoles/metabolismo , Interferencia de ARN , Factores de Transcripción/genética
2.
Cell Mol Life Sci ; 79(11): 550, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36242648

RESUMEN

In budding yeast Saccharomyces cerevisiae, the switch from aerobic fermentation to respiratory growth is separated by a period of growth arrest, known as the diauxic shift, accompanied by a significant metabolic rewiring, including the derepression of gluconeogenesis and the establishment of mitochondrial respiration. Previous studies reported hundreds of proteins and tens of metabolites accumulating differentially across the diauxic shift transition. To assess the differences in the protein-protein (PPIs) and protein-metabolite interactions (PMIs) yeast samples harvested in the glucose-utilizing, fermentative phase, ethanol-utilizing and early stationary respiratory phases were analysed using isothermal shift assay (iTSA) and a co-fractionation mass spectrometry approach, PROMIS. Whereas iTSA monitors changes in protein stability and is informative towards protein interaction status, PROMIS uses co-elution to delineate putative PPIs and PMIs. The resulting dataset comprises 1627 proteins and 247 metabolites, hundreds of proteins and tens of metabolites characterized by differential thermal stability and/or fractionation profile, constituting a novel resource to be mined for the regulatory PPIs and PMIs. The examples discussed here include (i) dissociation of the core and regulatory particle of the proteasome in the early stationary phase, (ii) the differential binding of a co-factor pyridoxal phosphate to the enzymes of amino acid metabolism and (iii) the putative, phase-specific interactions between proline-containing dipeptides and enzymes of central carbon metabolism.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aminoácidos/metabolismo , Carbono/metabolismo , Dipéptidos/metabolismo , Etanol , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Prolina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Fosfato de Piridoxal/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Mol Psychiatry ; 25(11): 2952-2969, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-30089790

RESUMEN

Lipids are essential to brain functions, yet they remain largely unexplored. Here we investigated the lipidome composition of prefrontal cortex gray matter in 396 cognitively healthy individuals with ages spanning 100 years, as well as 67 adult individuals diagnosed with autism (ASD), schizophrenia (SZ), and Down syndrome (DS). Of the 5024 detected lipids, 95% showed significant age-dependent concentration differences clustering into four temporal stages, and resulting in a gradual increase in membrane fluidity in individuals ranging from newborn to nonagenarian. Aging affects 14% of the brain lipidome with late-life changes starting predominantly at 50-55 years of age-a period of general metabolic transition. All three diseases alter the brain lipidome composition, leading-among other things-to a concentration decrease in glycerophospholipid metabolism and endocannabinoid signaling pathways. Lipid concentration decreases in SZ were further linked to genetic variants associated with disease, indicating the relevance of the lipidome changes to disease progression.


Asunto(s)
Envejecimiento/metabolismo , Disfunción Cognitiva/metabolismo , Lipidómica , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Cognición , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Adulto Joven
4.
Plant J ; 99(2): 216-230, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30888713

RESUMEN

It is generally recognized that many favorable genes which were lost during domestication, including those related to both nutritional value and stress resistance, remain hidden in wild relatives. To uncover such genes in teosinte, an ancestor of maize, we conducted metabolite profiling in a BC2 F7 population generated from a cross between the maize wild relative (Zea mays ssp. mexicana) and maize inbred line Mo17. In total, 65 primary metabolites were quantified in four tissues (seedling-stage leaf, grouting-stage leaf, young kernel and mature kernel) with clear tissue-specific patterns emerging. Three hundred and fifty quantitative trait loci (QTLs) for these metabolites were obtained, which were distributed unevenly across the genome and included two QTL hotspots. Metabolite concentrations frequently increased in the presence of alleles from the teosinte genome while the opposite was observed for grain yield and shape trait QTLs. Combination of the multi-tissue transcriptome and metabolome data provided considerable insight into the metabolic variations between maize and its wild relatives. This study thus identifies favorable genes hidden in the wild relative which should allow us to balance high yield and quality in future modern crop breeding programs.


Asunto(s)
Metabolómica , Sitios de Carácter Cuantitativo , Zea mays/genética , Análisis por Conglomerados , Cruzamientos Genéticos , Perfilación de la Expresión Génica , Genes de Plantas , Valor Nutritivo/genética , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
5.
Plant Biotechnol J ; 18(4): 929-943, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31533196

RESUMEN

FaMADS9 is the strawberry (Fragaria x ananassa) gene that exhibits the highest homology to the tomato (Solanum lycopersicum) RIN gene. Transgenic lines were obtained in which FaMADS9 was silenced. The fruits of these lines did not show differences in basic parameters, such as fruit firmness or colour, but exhibited lower Brix values in three of the four independent lines. The gene ontology MapMan category that was most enriched among the differentially expressed genes in the receptacles at the white stage corresponded to the regulation of transcription, including a high percentage of transcription factors and regulatory proteins associated with auxin action. In contrast, the most enriched categories at the red stage were transport, lipid metabolism and cell wall. Metabolomic analysis of the receptacles of the transformed fruits identified significant changes in the content of maltose, galactonic acid-1,4-lactone, proanthocyanidins and flavonols at the green/white stage, while isomaltose, anthocyanins and cuticular wax metabolism were the most affected at the red stage. Among the regulatory genes that were differentially expressed in the transgenic receptacles were several genes previously linked to flavonoid metabolism, such as MYB10, DIV, ZFN1, ZFN2, GT2, and GT5, or associated with the action of hormones, such as abscisic acid, SHP, ASR, GTE7 and SnRK2.7. The inference of a gene regulatory network, based on a dynamic Bayesian approach, among the genes differentially expressed in the transgenic receptacles at the white and red stages, identified the genes KAN1, DIV, ZFN2 and GTE7 as putative targets of FaMADS9. A MADS9-specific CArG box was identified in the promoters of these genes.


Asunto(s)
Fragaria/genética , Frutas/crecimiento & desarrollo , Proteínas de Dominio MADS/genética , Proteínas de Plantas/genética , Teorema de Bayes , Fragaria/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Metaboloma , Plantas Modificadas Genéticamente
6.
J Biol Chem ; 293(32): 12440-12453, 2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-29853640

RESUMEN

Small molecules not only represent cellular building blocks and metabolic intermediates, but also regulatory ligands and signaling molecules that interact with proteins. Although these interactions affect cellular metabolism, growth, and development, they have been largely understudied. Herein, we describe a method, which we named PROtein-Metabolite Interactions using Size separation (PROMIS), that allows simultaneous, global analysis of endogenous protein-small molecule and of protein-protein complexes. To this end, a cell-free native lysate from Arabidopsis thaliana cell cultures was fractionated by size-exclusion chromatography, followed by quantitative metabolomic and proteomic analyses. Proteins and small molecules showing similar elution behavior, across protein-containing fractions, constituted putative interactors. Applying PROMIS to an A. thaliana extract, we ascertained known protein-protein (PPIs) and protein-metabolite (PMIs) interactions and reproduced binding between small-molecule protease inhibitors and their respective proteases. More importantly, we present examples of two experimental strategies that exploit the PROMIS dataset to identify novel PMIs. By looking for similar elution behavior of metabolites and enzymes belonging to the same biochemical pathways, we identified putative feedback and feed-forward regulations in pantothenate biosynthesis and the methionine salvage cycle, respectively. By combining PROMIS with an orthogonal affinity purification approach, we identified an interaction between the dipeptide Tyr-Asp and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase. In summary, we present proof of concept for a powerful experimental tool that enables system-wide analysis of PMIs and PPIs across all biological systems. The dataset obtained here comprises nearly 140 metabolites and 5000 proteins, which can be mined for putative interactors.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cromatografía en Gel/métodos , Metaboloma , Proteoma/metabolismo , Proteómica/métodos , Programas Informáticos , Unión Proteica , Proteoma/aislamiento & purificación
7.
Plant J ; 93(6): 1102-1115, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29385634

RESUMEN

Maize is the cereal crop with the highest production worldwide, and its oil is a key energy resource. Improving the quantity and quality of maize oil requires a better understanding of lipid metabolism. To predict the function of maize genes involved in lipid biosynthesis, we assembled transcriptomic and lipidomic data sets from leaves of B73 and the high-oil line By804 in two distinct time-series experiments. The integrative analysis based on high-dimensional regularized regression yielded lipid-transcript associations indirectly validated by Gene Ontology and promoter motif enrichment analyses. The co-localization of lipid-transcript associations using the genetic mapping of lipid traits in leaves and seedlings of a B73 × By804 recombinant inbred line population uncovered 323 genes involved in the metabolism of phospholipids, galactolipids, sulfolipids and glycerolipids. The resulting association network further supported the involvement of 50 gene candidates in modulating levels of representatives from multiple acyl-lipid classes. Therefore, the proposed approach provides high-confidence candidates for experimental testing in maize and model plant species.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Metabolismo de los Lípidos/genética , Zea mays/genética , Vías Biosintéticas/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Ontología de Genes , Redes Reguladoras de Genes , Genes de Plantas/genética , Lípidos/biosíntesis , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Sitios de Carácter Cuantitativo/genética , Plantones/genética , Plantones/metabolismo , Zea mays/clasificación , Zea mays/metabolismo
8.
Plant J ; 93(6): 1116-1128, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29381266

RESUMEN

Primary metabolism plays a pivotal role in normal plant growth, development and reproduction. As maize is a major crop worldwide, the primary metabolites produced by maize plants are of immense importance from both calorific and nutritional perspectives. Here a genome-wide association study (GWAS) of 61 primary metabolites using a maize association panel containing 513 inbred lines identified 153 significant loci associated with the level of these metabolites in four independent tissues. The genome-wide expression level of 760 genes was also linked with metabolite levels within the same tissue. On average, the genetic variants at each locus or transcriptional variance of each gene identified here were estimated to have a minor effect (4.4-7.8%) on primary metabolic variation. Thirty-six loci or genes were prioritized as being worthy of future investigation, either with regard to functional characterization or for their utility for genetic improvement. This target list includes the well-known opaque 2 (O2) and lkr/sdh genes as well as many less well-characterized genes. During our investigation of these 36 loci, we analyzed the genetic components and variations underlying the trehalose, aspartate and aromatic amino acid pathways, thereby functionally characterizing four genes involved in primary metabolism in maize.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo/métodos , Redes y Vías Metabólicas/genética , Zea mays/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Genes de Plantas/genética , Metabolómica , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética , Especificidad de la Especie , Zea mays/clasificación , Zea mays/metabolismo
9.
Trends Genet ; 32(8): 459-469, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27235112

RESUMEN

The adoption of recombinant inbred line and introgression line populations, as well as the study of association mapping panels, has greatly accelerated our ability to identify the genes underlying plant phenotypic variance. In tandem, the development of metabolomics approaches has greatly enhanced our ability to comprehensively define cellular chemical composition. As a consequence, breeding for chemical composition is being extended beyond our traditional targets of oil and protein to include components such as essential amino acids, vitamins, and antioxidant secondary metabolites with considerable purported consequences for human health. Here, we review the above-mentioned developments paying particular attention to the genetic architecture of metabolic traits as well as updating the perspective for utilizing metabolomics in maize improvement.


Asunto(s)
Aminoácidos Esenciales/metabolismo , Metabolómica , Proteínas de Plantas/metabolismo , Zea mays/genética , Aminoácidos Esenciales/genética , Cruzamiento , Mapeo Cromosómico , Genotipo , Fenotipo , Aceites de Plantas/metabolismo , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo/genética , Zea mays/química , Zea mays/metabolismo
10.
Nature ; 501(7467): 421-5, 2013 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-23945590

RESUMEN

Activated oncogenes and anticancer chemotherapy induce cellular senescence, a terminal growth arrest of viable cells characterized by S-phase entry-blocking histone 3 lysine 9 trimethylation (H3K9me3). Although therapy-induced senescence (TIS) improves long-term outcomes, potentially harmful properties of senescent tumour cells make their quantitative elimination a therapeutic priority. Here we use the Eµ-myc transgenic mouse lymphoma model in which TIS depends on the H3K9 histone methyltransferase Suv39h1 to show the mechanism and therapeutic exploitation of senescence-related metabolic reprogramming in vitro and in vivo. After senescence-inducing chemotherapy, TIS-competent lymphomas but not TIS-incompetent Suv39h1(-) lymphomas show increased glucose utilization and much higher ATP production. We demonstrate that this is linked to massive proteotoxic stress, which is a consequence of the senescence-associated secretory phenotype (SASP) described previously. SASP-producing TIS cells exhibited endoplasmic reticulum stress, an unfolded protein response (UPR), and increased ubiquitination, thereby targeting toxic proteins for autophagy in an acutely energy-consuming fashion. Accordingly, TIS lymphomas, unlike senescence models that lack a strong SASP response, were more sensitive to blocking glucose utilization or autophagy, which led to their selective elimination through caspase-12- and caspase-3-mediated endoplasmic-reticulum-related apoptosis. Consequently, pharmacological targeting of these metabolic demands on TIS induction in vivo prompted tumour regression and improved treatment outcomes further. These findings unveil the hypercatabolic nature of TIS that is therapeutically exploitable by synthetic lethal metabolic targeting.


Asunto(s)
Autofagia , Senescencia Celular , Glucosa/metabolismo , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Caspasa 12/metabolismo , Caspasa 3/metabolismo , Senescencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Femenino , Linfoma de Células B/genética , Linfoma de Células B/patología , Masculino , Ratones , Ratones Transgénicos , Proteolisis , Estrés Fisiológico , Tasa de Supervivencia
11.
PLoS Genet ; 12(10): e1006363, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27760136

RESUMEN

Plant primary metabolism is a highly coordinated, central, and complex network of biochemical processes regulated at both the genetic and post-translational levels. The genetic basis of this network can be explored by analyzing the metabolic composition of genetically diverse genotypes in a given plant species. Here, we report an integrative strategy combining quantitative genetic mapping and metabolite‒transcript correlation networks to identify functional associations between genes and primary metabolites in Arabidopsis thaliana. Genome-wide association study (GWAS) was used to identify metabolic quantitative trait loci (mQTL). Correlation networks built using metabolite and transcript data derived from a previously published time-course stress study yielded metabolite‒transcript correlations identified by covariation. Finally, results obtained in this study were compared with mQTL previously described. We applied a statistical framework to test and compare the performance of different single methods (network approach and quantitative genetics methods, representing the two orthogonal approaches combined in our strategy) with that of the combined strategy. We show that the combined strategy has improved performance manifested by increased sensitivity and accuracy. This combined strategy allowed the identification of 92 candidate associations between structural genes and primary metabolites, which not only included previously well-characterized gene‒metabolite associations, but also revealed novel associations. Using loss-of-function mutants, we validated two of the novel associations with genes involved in tyrosine degradation and in ß-alanine metabolism. In conclusion, we demonstrate that applying our integrative strategy to the largely untapped resource of metabolite-transcript associations can facilitate the discovery of novel metabolite-related genes. This integrative strategy is not limited to A. thaliana, but generally applicable to other plant species.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/genética , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo/genética , Alanina/genética , Alanina/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genoma de Planta , Genotipo , Estadística como Asunto , Tirosina/genética , Tirosina/metabolismo
12.
Plant J ; 90(2): 319-329, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28122143

RESUMEN

Heterosis has been extensively exploited for yield gain in maize (Zea mays L.). Here we conducted a comparative metabolomics-based analysis of young roots from in vitro germinating seedlings and from leaves of field-grown plants in a panel of inbred lines from the Dent and Flint heterotic patterns as well as selected F1 hybrids. We found that metabolite levels in hybrids were more robust than in inbred lines. Using state-of-the-art modeling techniques, the most robust metabolites from roots and leaves explained up to 37 and 44% of the variance in the biomass from plants grown in two distinct field trials. In addition, a correlation-based analysis highlighted the trade-off between defense-related metabolites and hybrid performance. Therefore, our findings demonstrated the potential of metabolic profiles from young maize roots grown under tightly controlled conditions to predict hybrid performance in multiple field trials, thus bridging the greenhouse-field gap.


Asunto(s)
Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Zea mays/metabolismo , Zea mays/fisiología , Biomasa , Hibridación Genética/genética , Hibridación Genética/fisiología , Metabolómica/métodos , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Plantones/metabolismo , Plantones/fisiología
13.
Mol Biol Evol ; 34(5): 1155-1166, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28158622

RESUMEN

Lipids are essential components of the brain. Here, we conducted a comprehensive mass spectrometry-based analysis of lipidome composition in the prefrontal cortex of 40 humans, 40 chimpanzees, and 40 rhesus monkeys over postnatal development and adulthood. Of the 11,772 quantified lipid peaks, 7,589 change significantly along the lifespan. More than 60% of these changes occur prior to adulthood, with less than a quarter associated with myelination progression. Evolutionarily, 36% of the age-dependent lipids exhibit concentration profiles distinct to one of the three species; 488 (18%) of them were unique to humans. In both humans and chimpanzees, the greatest extent of species-specific differences occurs in early development. Human-specific lipidome differences, however, persist over most of the lifespan and reach their peak from 20 to 35 years of age, when compared with chimpanzee-specific ones.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Lípidos/fisiología , Factores de Edad , Animales , Evolución Biológica , Encéfalo/anatomía & histología , Encéfalo/metabolismo , Humanos , Lípidos/genética , Macaca mulatta/anatomía & histología , Espectrometría de Masas/métodos , Pan troglodytes/anatomía & histología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiología , Especificidad de la Especie
14.
Plant J ; 88(5): 826-838, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27520391

RESUMEN

Fumarate and malate are known intermediates of the TCA cycle, a mitochondrial metabolic pathway generating NADH for respiration. Arabidopsis thaliana and other Brassicaceae contain an additional cytosolic fumarase (FUM2) that functions in carbon assimilation and nitrogen use. Here, we report the identification of a hitherto unknown FUM2 promoter insertion/deletion (InDel) polymorphism found between the Col-0 and C24 accessions, which also divides a large number of Arabidopsis accessions carrying either the Col-0 or the C24 allele. The polymorphism consists of two stretches of 2.1 and 3.8 kb, which are both absent from the promotor region of Col-0 FUM2. By analysing mutants as well as mapping and natural populations with contrasting FUM2 alleles, the promotor insertion was linked to reduced FUM2 mRNA expression, reduced fumarase activity and reduced fumarate/malate ratio in leaves. In a large population of 174 natural accessions, the polymorphism was also found to be associated with the fumarate/malate ratio, malate and fumarate levels, and with dry weight at 15 days after sowing (DAS). The association with biomass production was confirmed in an even larger (251) accession population for dry weight at 22 DAS. The dominant Col-0 allele that results in increased fumarate/malate ratios and enhanced biomass production is predominantly found in central/eastern European accessions, whereas the C24 type allele is prevalent on the Iberian Peninsula, west of the Rhine and in the British Isles. Our findings support the role of FUM2 in diurnal carbon storage, and point to a growth advantage of accessions carrying the FUM2 Col-0 allele.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Polimorfismo Genético/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología
15.
BMC Plant Biol ; 17(1): 17, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28100172

RESUMEN

BACKGROUND: Flavonoids constitute a diverse class of secondary metabolites which exhibit potent bioactivities for human health and have been indicated to play an important role in plant development and defense. However, accumulation and variation of flavonoid content in diverse maize lines and the genes responsible for their biosynthesis in this important crop remain largely unknown. In this study, we combine genetic mapping, metabolite profiling and gene regulatory network analysis to further enhance understanding of the maize flavonoid pathway. RESULTS: We repeatedly detected 25 QTL corresponding to 23 distinct flavonoids across different environments or populations. In addition, a total of 39 genes were revealed both by an expression based network analysis and genetic mapping. Finally, the function of three candidate genes, including two UDP-glycosyltransferases (UGT) and an oxygenase which belongs to the flavone synthase super family, was revealed via preliminary molecular functional characterization. CONCLUSION: We explored the genetic influences on the flavonoid biosynthesis based on integrating the genomic, transcriptomic and metabolomic information which provided a rich source of potential candidate genes. The integrated genomics based genetic mapping strategy is highly efficient for defining the complexity of functional genetic variants and their respective regulatory networks as well as in helping to select candidate genes and allelic variance before embarking on laborious transgenic validations.


Asunto(s)
Flavonoides/biosíntesis , Proteínas de Plantas/genética , Zea mays/genética , Zea mays/metabolismo , Vías Biosintéticas , Mapeo Cromosómico , Genómica , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo
16.
J Exp Bot ; 68(13): 3487-3499, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28586477

RESUMEN

Interactions between metabolites and proteins play an integral role in all cellular functions. Here we describe an affinity purification (AP) approach in combination with LC/MS-based metabolomics and proteomics that allows, to our knowledge for the first time, analysis of protein-metabolite and protein-protein interactions simultaneously in plant systems. More specifically, we examined protein and small-molecule partners of the three (of five) nucleoside diphosphate kinases present in the Arabidopsis genome (NDPK1-NDPK3). The bona fide role of NDPKs is the exchange of terminal phosphate groups between nucleoside diphosphates (NDPs) and triphosphates (NTPs). However, other functions have been reported, which probably depend on both the proteins and small molecules specifically interacting with the NDPK. Using our approach we identified 23, 17, and 8 novel protein partners of NDPK1, NDPK2, and NDPK3, respectively, with nucleotide-dependent proteins such as actin and adenosine kinase 2 being enriched. Particularly interesting, however, was the co-elution of glutathione S-transferases (GSTs) and reduced glutathione (GSH) with the affinity-purified NDPK1 complexes. Following up on this finding, we could demonstrate that NDPK1 undergoes glutathionylation, opening a new paradigm of NDPK regulation in plants. The described results extend our knowledge of NDPKs, the key enzymes regulating NDP/NTP homeostasis.


Asunto(s)
Arabidopsis/genética , Cromatografía de Afinidad , Metabolómica , Nucleósido-Difosfato Quinasa/genética , Proteínas de Plantas/genética , Proteómica , Nucleósido-Difosfato Quinasa/metabolismo , Proteínas de Plantas/metabolismo
17.
Plant Cell ; 26(3): 915-28, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24642935

RESUMEN

Glycerolipid metabolism of plants responds dynamically to changes in light intensity and temperature, leading to the modification of membrane lipid composition to ensure optimal biochemical and physical properties in the new environment. Although multiple posttranscriptional regulatory mechanisms have been reported to be involved in the process, the contribution of transcriptional regulation remains largely unknown. Here, we present an integrative analysis of transcriptomic and lipidomic data, revealing large-scale coordination between gene expression and changes in glycerolipid levels during the Arabidopsis thaliana response to light and temperature stimuli. Using a multivariate regression technique called O2PLS, we show that the gene expression response is strictly coordinated at the biochemical pathway level and occurs in parallel with changes of specific glycerolipid pools. Five interesting candidate genes were chosen for further analysis from a larger set of candidates identified based on their close association with various groups of glycerolipids. Lipidomic analysis of knockout mutant lines of these five genes showed a significant relationship between the coordination of transcripts and glycerolipid levels in a changing environment and the effects of single gene perturbations.


Asunto(s)
Arabidopsis/metabolismo , Expresión Génica , Genes de Plantas , Lípidos de la Membrana/metabolismo , Arabidopsis/genética , Transcriptoma
18.
Plant Cell ; 26(6): 2310-2350, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24894045

RESUMEN

We investigated the systems response of metabolism and growth after an increase in irradiance in the nonsaturating range in the algal model Chlamydomonas reinhardtii. In a three-step process, photosynthesis and the levels of metabolites increased immediately, growth increased after 10 to 15 min, and transcript and protein abundance responded by 40 and 120 to 240 min, respectively. In the first phase, starch and metabolites provided a transient buffer for carbon until growth increased. This uncouples photosynthesis from growth in a fluctuating light environment. In the first and second phases, rising metabolite levels and increased polysome loading drove an increase in fluxes. Most Calvin-Benson cycle (CBC) enzymes were substrate-limited in vivo, and strikingly, many were present at higher concentrations than their substrates, explaining how rising metabolite levels stimulate CBC flux. Rubisco, fructose-1,6-biosphosphatase, and seduheptulose-1,7-bisphosphatase were close to substrate saturation in vivo, and flux was increased by posttranslational activation. In the third phase, changes in abundance of particular proteins, including increases in plastidial ATP synthase and some CBC enzymes, relieved potential bottlenecks and readjusted protein allocation between different processes. Despite reasonable overall agreement between changes in transcript and protein abundance (R2 = 0.24), many proteins, including those in photosynthesis, changed independently of transcript abundance.

19.
Theor Appl Genet ; 130(9): 1927-1939, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28647896

RESUMEN

KEY MESSAGE: Complementing genomic data with other "omics" predictors can increase the probability of success for predicting the best hybrid combinations using complex agronomic traits. Accurate prediction of traits with complex genetic architecture is crucial for selecting superior candidates in animal and plant breeding and for guiding decisions in personalized medicine. Whole-genome prediction has revolutionized these areas but has inherent limitations in incorporating intricate epistatic interactions. Downstream "omics" data are expected to integrate interactions within and between different biological strata and provide the opportunity to improve trait prediction. Yet, predicting traits from parents to progeny has not been addressed by a combination of "omics" data. Here, we evaluate several "omics" predictors-genomic, transcriptomic and metabolic data-measured on parent lines at early developmental stages and demonstrate that the integration of transcriptomic with genomic data leads to higher success rates in the correct prediction of untested hybrid combinations in maize. Despite the high predictive ability of genomic data, transcriptomic data alone outperformed them and other predictors for the most complex heterotic trait, dry matter yield. An eQTL analysis revealed that transcriptomic data integrate genomic information from both, adjacent and distant sites relative to the expressed genes. Together, these findings suggest that downstream predictors capture physiological epistasis that is transmitted from parents to their hybrid offspring. We conclude that the use of downstream "omics" data in prediction can exploit important information beyond structural genomics for leveraging the efficiency of hybrid breeding.


Asunto(s)
Zea mays/genética , Mapeo Cromosómico , Genómica , Vigor Híbrido , Metabolómica , Modelos Genéticos , Fenotipo , Fitomejoramiento , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Transcriptoma
20.
PLoS Biol ; 12(5): e1001871, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24866127

RESUMEN

Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized by superior cognition, their muscular performance might be markedly inferior to that of chimpanzees and macaque monkeys.


Asunto(s)
Macaca/metabolismo , Metaboloma , Músculo Esquelético/metabolismo , Pan troglodytes/metabolismo , Corteza Prefrontal/metabolismo , Animales , Evolución Biológica , Cognición/fisiología , Metabolismo Energético , Femenino , Humanos , Macaca/psicología , Masculino , Ratones , Fuerza Muscular/fisiología , Pan troglodytes/psicología , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA