Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139095

RESUMEN

In the shadow of SARS-CoV-2, influenza seems to be an innocent virus, although new zoonotic influenza viruses evolved by mutations may lead to severe pandemics. According to WHO, there is an urgent need for better antiviral drugs. Blocking viral hemagglutinin with multivalent N-acetylneuraminic acid derivatives is a promising approach to prevent influenza infection. Moreover, dual inhibition of both hemagglutinin and neuraminidase may result in a more powerful effect. Since both viral glycoproteins can bind to neuraminic acid, we have prepared three series of amphiphilic self-assembling 2-thio-neuraminic acid derivatives constituting aggregates in aqueous medium to take advantage of their multivalent effect. One of the series was prepared by the azide-alkyne click reaction, and the other two by the thio-click reaction to yield neuraminic acid derivatives containing lipophilic tails of different sizes and an enzymatically stable thioglycosidic bond. Two of the three bis-octyl derivatives produced proved to be active against influenza viruses, while all three octyl derivatives bound to hemagglutinin and neuraminidase from H1N1 and H3N2 influenza types.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Humanos , Gripe Humana/tratamiento farmacológico , Ácido N-Acetilneuramínico/farmacología , Ácido N-Acetilneuramínico/metabolismo , Hemaglutininas/farmacología , Neuraminidasa/metabolismo , Subtipo H3N2 del Virus de la Influenza A , Ácidos Neuramínicos , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(6): 1958-1967, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30670663

RESUMEN

Interactions between glycans and glycan binding proteins are essential for numerous processes in all kingdoms of life. Glycan microarrays are an excellent tool to examine protein-glycan interactions. Here, we present a microbe-focused glycan microarray platform based on oligosaccharides obtained by chemical synthesis. Glycans were generated by combining different carbohydrate synthesis approaches including automated glycan assembly, solution-phase synthesis, and chemoenzymatic methods. The current library of more than 300 glycans is as diverse as the mammalian glycan array from the Consortium for Functional Glycomics and, due to its microbial focus, highly complementary. This glycan platform is essential for the characterization of various classes of glycan binding proteins. Applications of this glycan array platform are highlighted by the characterization of innate immune receptors and bacterial virulence factors as well as the analysis of human humoral immunity to pathogenic glycans.


Asunto(s)
Proteínas Portadoras/química , Análisis por Micromatrices/métodos , Polisacáridos/química , Polisacáridos/inmunología , Animales , Antígenos Bacterianos/química , Antígenos Bacterianos/inmunología , Células CHO , Cricetulus , Glicómica , Humanos , Sistema Inmunológico , Lectinas , Oligosacáridos , Polisacáridos/clasificación , Unión Proteica , Proteínas Recombinantes , Especificidad de la Especie
3.
Eur Biophys J ; 50(3-4): 461-471, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33554291

RESUMEN

The determination of a suitable buffer environment for a protein of interest is not an easy task. The requirements of advanced techniques, the demands on the biological material and the researcher time needed for buffer optimization, as well as personal inflexibility, lead frequently to the use of sub-optimal buffers. Here, we demonstrate the design of a 48-condition buffer screen that can be used to determine an appropriate environment for downstream studies. By the combination of several techniques (differential scanning fluorimetry, dynamic light scattering, and bio-layer interferometry), we are able to assess the protein stability, homogeneity and binding activity across the screen with less than half a milligram of protein in 1 day. The application of this screen helps to avoid unsuitable conditions, to explain problems observed upon protein analysis and to choose the most suitable buffers for further research. The screen can be routinely used as a primary screen for buffer optimization in labs and facilities.


Asunto(s)
Estabilidad Proteica , Tampones (Química) , Dispersión Dinámica de Luz , Fluorometría , Proteínas
4.
Molecules ; 26(3)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494330

RESUMEN

Synthesis of tetravalent thio- and selenogalactopyranoside-containing glycoclusters using azide-alkyne click strategy is presented. Prepared compounds are potential ligands of Pseudomonas aeruginosa lectin PA-IL. P. aeruginosa is an opportunistic human pathogen associated with cystic fibrosis, and PA-IL is one of its virulence factors. The interactions of PA-IL and tetravalent glycoconjugates were investigated using hemagglutination inhibition assay and compared with mono- and divalent galactosides (propargyl 1-thio- and 1-seleno-ß-d-galactopyranoside, digalactosyl diselenide and digalactosyl disulfide). The lectin-carbohydrate interactions were also studied by saturation transfer difference NMR technique. Both thio- and seleno-tetravalent glycoconjugates were able to inhibit PA-IL significantly better than simple d-galactose or their intermediate compounds from the synthesis.


Asunto(s)
Proteínas Bacterianas/química , Glicoconjugados , Lectinas/química , Pseudomonas aeruginosa/química , Glicoconjugados/síntesis química , Glicoconjugados/química , Humanos , Resonancia Magnética Nuclear Biomolecular
5.
Chemistry ; 26(47): 10769-10780, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32208534

RESUMEN

The molecular recognition of carbohydrates by proteins plays a key role in many biological processes including immune response, pathogen entry into a cell, and cell-cell adhesion (e.g., in cancer metastasis). Carbohydrates interact with proteins mainly through hydrogen bonding, metal-ion-mediated interaction, and non-polar dispersion interactions. The role of dispersion-driven CH-π interactions (stacking) in protein-carbohydrate recognition has been underestimated for a long time considering the polar interactions to be the main forces for saccharide interactions. However, over the last few years it turns out that non-polar interactions are equally important. In this study, we analyzed the CH-π interactions employing bioinformatics (data mining, structural analysis), several experimental (isothermal titration calorimetry (ITC), X-ray crystallography), and computational techniques. The Protein Data Bank (PDB) has been used as a source of structural data. The PDB contains over 12 000 protein complexes with carbohydrates. Stacking interactions are very frequently present in such complexes (about 39 % of identified structures). The calculations and the ITC measurement results suggest that the CH-π stacking contribution to the overall binding energy ranges from 4 up to 8 kcal mol-1 . All the results show that the stacking CH-π interactions in protein-carbohydrate complexes can be considered to be a driving force of the binding in such complexes.


Asunto(s)
Carbohidratos/química , Carbono/química , Biología Computacional , Hidrógeno/química , Proteínas/química , Enlace de Hidrógeno , Técnicas In Vitro , Unión Proteica , Termodinámica
6.
PLoS Pathog ; 13(8): e1006564, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28806750

RESUMEN

Photorhabdus asymbiotica is one of the three recognized species of the Photorhabdus genus, which consists of gram-negative bioluminescent bacteria belonging to the family Morganellaceae. These bacteria live in a symbiotic relationship with nematodes from the genus Heterorhabditis, together forming a complex that is highly pathogenic for insects. Unlike other Photorhabdus species, which are strictly entomopathogenic, P. asymbiotica is unique in its ability to act as an emerging human pathogen. Analysis of the P. asymbiotica genome identified a novel fucose-binding lectin designated PHL with a strong sequence similarity to the recently described P. luminescens lectin PLL. Recombinant PHL exhibited high affinity for fucosylated carbohydrates and the unusual disaccharide 3,6-O-Me2-Glcß1-4(2,3-O-Me2)Rhaα-O-(p-C6H4)-OCH2CH2NH2 from Mycobacterium leprae. Based on its crystal structure, PHL forms a seven-bladed ß-propeller assembling into a homo-dimer with an inter-subunit disulfide bridge. Investigating complexes with different ligands revealed the existence of two sets of binding sites per monomer-the first type prefers l-fucose and its derivatives, whereas the second type can bind d-galactose. Based on the sequence analysis, PHL could contain up to twelve binding sites per monomer. PHL was shown to interact with all types of red blood cells and insect haemocytes. Interestingly, PHL inhibited the production of reactive oxygen species induced by zymosan A in human blood and antimicrobial activity both in human blood, serum and insect haemolymph. Concurrently, PHL increased the constitutive level of oxidants in the blood and induced melanisation in haemolymph. Our results suggest that PHL might play a crucial role in the interaction of P. asymbiotica with both human and insect hosts.


Asunto(s)
Proteínas Bacterianas/inmunología , Interacciones Huésped-Patógeno/inmunología , Lectinas/inmunología , Photorhabdus/inmunología , Animales , Proteínas Bacterianas/genética , Secuencia de Bases , Cristalografía por Rayos X , Humanos , Lectinas/química , Lectinas/genética , Datos de Secuencia Molecular , Photorhabdus/genética , Conformación Proteica , Resonancia por Plasmón de Superficie
7.
Molecules ; 24(24)2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835851

RESUMEN

The Photorhabdus species is a Gram-negative bacteria of the family Morganellaceae that is known for its mutualistic relationship with Heterorhabditis nematodes and pathogenicity toward insects. This study is focused on the characterization of the recombinant lectin PLL3 with an origin in P. laumondii subsp. laumondii. PLL3 belongs to the PLL family of lectins with a seven-bladed ß-propeller fold. The binding properties of PLL3 were tested by hemagglutination assay, glycan array, isothermal titration calorimetry, and surface plasmon resonance, and its structure was determined by X-ray crystallography. Obtained data revealed that PLL3 binds similar carbohydrates to those that the other PLL family members bind, with some differences in the binding properties. PLL3 exhibited the highest affinity toward l-fucose and its derivatives but was also able to interact with O-methylated glycans and other ligands. Unlike the other members of this family, PLL3 was discovered to be a monomer, which might correspond to a weaker avidity effect compared to homologous lectins. Based on the similarity to the related lectins and their proposed biological function, PLL3 might accompany them during the interaction of P. laumondii with both the nematode partner and the insect host.


Asunto(s)
Lectinas/química , Lectinas/metabolismo , Photorhabdus/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Calorimetría , Cristalografía por Rayos X , Fructosa/metabolismo , Lectinas/genética , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Resonancia por Plasmón de Superficie
8.
Molecules ; 24(12)2019 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-31216664

RESUMEN

Series of multivalent α-l-fucoside containing glycoclusters and variously decorated l-fucosides were synthesized to find potential inhibitors of fucose-specific lectins and study the structure-binding affinity relationships. Tri- and tetravalent fucoclusters were built using copper-mediated azide-alkyne click chemistry. Series of fucoside monomers and dimers were synthesized using various methods, namely glycosylation, an azide-alkyne click reaction, photoinduced thiol-en addition, and sulfation. The interactions between compounds with six fucolectins of bacterial or fungal origin were tested using a hemagglutination inhibition assay. As a result, a tetravalent, α-l-fucose presenting glycocluster showed to be a ligand that was orders of magnitude better than a simple monosaccharide for tested lectins in most cases, which can nominate it as a universal ligand for studied lectins. This compound was also able to inhibit the adhesion of Pseudomonas aeruginosa cells to human epithelial bronchial cells. A trivalent fucocluster with a protected amine functional group also seems to be a promising candidate for designing glycoconjugates and chimeras.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lectinas/química , Lectinas/metabolismo , Fucosa/química , Fucosa/metabolismo , Hemaglutinación , Pruebas de Inhibición de Hemaglutinación , Humanos , Unión Proteica , Relación Estructura-Actividad
9.
J Biol Chem ; 292(42): 17525-17540, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-28860196

RESUMEN

Multistep phosphorelay (MSP) cascades mediate responses to a wide spectrum of stimuli, including plant hormonal signaling, but several aspects of MSP await elucidation. Here, we provide first insight into the key step of MSP-mediated phosphotransfer in a eukaryotic system, the phosphorylation of the receiver domain of the histidine kinase CYTOKININ-INDEPENDENT 1 (CKI1RD) from Arabidopsis thaliana We observed that the crystal structures of free, Mg2+-bound, and beryllofluoridated CKI1RD (a stable analogue of the labile phosphorylated form) were identical and similar to the active state of receiver domains of bacterial response regulators. However, the three CKI1RD variants exhibited different conformational dynamics in solution. NMR studies revealed that Mg2+ binding and beryllofluoridation alter the conformational equilibrium of the ß3-α3 loop close to the phosphorylation site. Mutations that perturbed the conformational behavior of the ß3-α3 loop while keeping the active-site aspartate intact resulted in suppression of CKI1 function. Mechanistically, homology modeling indicated that the ß3-α3 loop directly interacts with the ATP-binding site of the CKI1 histidine kinase domain. The functional relevance of the conformational dynamics observed in the ß3-α3 loop of CKI1RD was supported by a comparison with another A. thaliana histidine kinase, ETR1. In contrast to the highly dynamic ß3-α3 loop of CKI1RD, the corresponding loop of the ETR1 receiver domain (ETR1RD) exhibited little conformational exchange and adopted a different orientation in crystals. Biochemical data indicated that ETR1RD is involved in phosphorylation-independent signaling, implying a direct link between conformational behavior and the ability of eukaryotic receiver domains to participate in MSP.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Proteínas Quinasas/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cristalografía por Rayos X , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Proteínas Quinasas/genética , Estructura Secundaria de Proteína , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética
10.
Proteins ; 86(9): 897-911, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29722060

RESUMEN

We report the characterization of the dimeric protein AB21 from Agaricus bisporus, one of the most commonly and widely consumed mushrooms in the world. The protein shares no significant sequence similarity with any protein of known function, and it is the first characterized member of its protein family. The coding sequence of the ab21 gene was determined and the protein was expressed in E. coli in a recombinant form. We demonstrated a high thermal and pH stability of AB21 and proved the weak affinity of the protein to divalent ions of some transition metals (nickel, zinc, cadmium, and cobalt). The reported crystallographic structure exhibits an interesting rod-like helical bundle fold with structural similarity to bacterial toxins of the ClyA superfamily. By immunostaining, we demonstrated an abundance of AB21 in the fruiting bodies of A. bisporus.


Asunto(s)
Agaricus/química , Toxinas Bacterianas/química , Proteínas Fúngicas/biosíntesis , Proteínas Citotóxicas Formadoras de Poros/biosíntesis , Cationes Bivalentes/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Elementos de Transición/química
11.
PLoS Pathog ; 12(4): e1005555, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27058347

RESUMEN

The immune mechanisms that recognize inhaled Aspergillus fumigatus conidia to promote their elimination from the lungs are incompletely understood. FleA is a lectin expressed by Aspergillus fumigatus that has twelve binding sites for fucosylated structures that are abundant in the glycan coats of multiple plant and animal proteins. The role of FleA is unknown: it could bind fucose in decomposed plant matter to allow Aspergillus fumigatus to thrive in soil, or it may be a virulence factor that binds fucose in lung glycoproteins to cause Aspergillus fumigatus pneumonia. Our studies show that FleA protein and Aspergillus fumigatus conidia bind avidly to purified lung mucin glycoproteins in a fucose-dependent manner. In addition, FleA binds strongly to macrophage cell surface proteins, and macrophages bind and phagocytose fleA-deficient (∆fleA) conidia much less efficiently than wild type (WT) conidia. Furthermore, a potent fucopyranoside glycomimetic inhibitor of FleA inhibits binding and phagocytosis of WT conidia by macrophages, confirming the specific role of fucose binding in macrophage recognition of WT conidia. Finally, mice infected with ΔfleA conidia had more severe pneumonia and invasive aspergillosis than mice infected with WT conidia. These findings demonstrate that FleA is not a virulence factor for Aspergillus fumigatus. Instead, host recognition of FleA is a critical step in mechanisms of mucin binding, mucociliary clearance, and macrophage killing that prevent Aspergillus fumigatus pneumonia.


Asunto(s)
Aspergillus fumigatus/inmunología , Lectinas/inmunología , Macrófagos/inmunología , Mucinas/inmunología , Aspergilosis Pulmonar/inmunología , Adulto , Animales , Aspergillus fumigatus/patogenicidad , Western Blotting , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Fucosa/metabolismo , Proteínas Fúngicas/inmunología , Proteínas Fúngicas/metabolismo , Humanos , Inmunidad Mucosa/inmunología , Lectinas/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Mucinas/metabolismo , Aspergilosis Pulmonar/metabolismo , Esporas Fúngicas/inmunología
12.
Chemistry ; 24(16): 4055-4068, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29341313

RESUMEN

Photorhabdus asymbiotica is a gram-negative bacterium that is not only as effective an insect pathogen as other members of the genus, but it also causes serious diseases in humans. The recently identified lectin PHL from P. asymbiotica verifiably modulates an immune response of humans and insects, which supports the idea that the lectin might play an important role in the host-pathogen interaction. Dimeric PHL contains up to seven l-fucose-specific binding sites per monomer, and in order to target multiple binding sites of PHL, α-l-fucoside-containing di-, tri- and tetravalent glycoclusters were synthesized. Methyl gallate and pentaerythritol were chosen as multivalent scaffolds, and the fucoclusters were built from the above-mentioned cores by coupling with different oligoethylene bridges and propargyl α-l-fucosides using 1,3-dipolar azide-alkyne cycloaddition. The interaction between fucoside derivates and PHL was investigated by several biophysical and biological methods, ITC and SPR measurements, hemagglutination inhibition assay, and an investigation of bacterial aggregation properties were carried out. Moreover, details of the interaction between PHL and propargyl α-l-fucoside as a monomer unit were revealed using X-ray crystallography. Besides this, the interaction with multivalent compounds was studied by NMR techniques. The newly synthesized multivalent fucoclusters proved to be up to several orders of magnitude better ligands than the natural ligand, l-fucose.


Asunto(s)
Glicósidos/síntesis química , Lectinas/química , Photorhabdus/química , Sitios de Unión , Cristalografía por Rayos X , Fucosa/síntesis química , Fucosa/química , Glicósidos/química , Glicósidos/metabolismo , Humanos , Lectinas/metabolismo , Ligandos , Conformación Molecular
13.
J Biol Chem ; 291(48): 25032-25049, 2016 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-27758853

RESUMEN

Photorhabdus luminescens is known for its symbiosis with the entomopathogenic nematode Heterorhabditis bacteriophora and its pathogenicity toward insect larvae. A hypothetical protein from P. luminescens was identified, purified from the native source, and characterized as an l-fucose-binding lectin, named P. luminescens lectin (PLL). Glycan array and biochemical characterization data revealed PLL to be specific toward l-fucose and the disaccharide glycan 3,6-O-Me2-Glcß1-4(2,3-O-Me2)Rhaα-O-(p-C6H4)-OCH2CH2NH2 PLL was discovered to be a homotetramer with an intersubunit disulfide bridge. The crystal structures of native and recombinant PLL revealed a seven-bladed ß-propeller fold creating seven putative fucose-binding sites per monomer. The crystal structure of the recombinant PLL·l-fucose complex confirmed that at least three sites were fucose-binding. Moreover, the crystal structures indicated that some of the other sites are masked either by the tetrameric nature of the lectin or by incorporation of the C terminus of the lectin into one of these sites. PLL exhibited an ability to bind to insect hemocytes and the cuticular surface of a nematode, H. bacteriophora.


Asunto(s)
Proteínas Bacterianas/química , Fucosa/química , Lectinas/química , Photorhabdus/química , Proteínas Bacterianas/aislamiento & purificación , Cristalografía por Rayos X , Lectinas/aislamiento & purificación , Dominios Proteicos , Estructura Cuaternaria de Proteína
14.
J Exp Bot ; 68(13): 3287-3301, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28472349

RESUMEN

Dirigent (DIR) proteins were found to mediate regio- and stereoselectivity of bimolecular phenoxy radical coupling during lignan biosynthesis. Here we summarize the current knowledge of the importance of DIR proteins in lignan and lignin biosynthesis and highlight their possible importance in plant development. We focus on the still rather enigmatic Arabidopsis DIR gene family, discussing the few members with known functional importance. We comment on recent discoveries describing the detailed structure of two DIR proteins with implications in the mechanism of DIR-mediated catalysis. Further, we summarize the ample evidence for stress-induced dirigent gene expression, suggesting the role of DIRs in adaptive responses. In the second part of our work, we present a preliminary bioinformatics-based characterization of the AtDIR family. The phylogenetic analysis of AtDIRs complemented by comparison with DIR proteins of mostly known function from other species allowed us to suggest possible roles for several members of this family and identify interesting AtDIR targets for further study. Finally, based on the available metadata and our in silico analysis of AtDIR promoters, we hypothesize about the existence of specific transcriptional controls for individual AtDIR genes and implicate them in various stress responses, hormonal regulations, and developmental processes.


Asunto(s)
Arabidopsis/genética , Proteínas de Plantas/genética , Arabidopsis/química , Arabidopsis/metabolismo , Biología Computacional , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
15.
Nucleic Acids Res ; 43(Database issue): D369-75, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25392418

RESUMEN

Following the discovery of serious errors in the structure of biomacromolecules, structure validation has become a key topic of research, especially for ligands and non-standard residues. ValidatorDB (freely available at http://ncbr.muni.cz/ValidatorDB) offers a new step in this direction, in the form of a database of validation results for all ligands and non-standard residues from the Protein Data Bank (all molecules with seven or more heavy atoms). Model molecules from the wwPDB Chemical Component Dictionary are used as reference during validation. ValidatorDB covers the main aspects of validation of annotation, and additionally introduces several useful validation analyses. The most significant is the classification of chirality errors, allowing the user to distinguish between serious issues and minor inconsistencies. Other such analyses are able to report, for example, completely erroneous ligands, alternate conformations or complete identity with the model molecules. All results are systematically classified into categories, and statistical evaluations are performed. In addition to detailed validation reports for each molecule, ValidatorDB provides summaries of the validation results for the entire PDB, for sets of molecules sharing the same annotation (three-letter code) or the same PDB entry, and for user-defined selections of annotations or PDB entries.


Asunto(s)
Bases de Datos de Proteínas , Proteínas/química , Aminoácidos/química , Internet , Ligandos , Modelos Moleculares , Anotación de Secuencia Molecular , Conformación Proteica , Reproducibilidad de los Resultados
16.
Proteomics ; 16(24): 3126-3136, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27650323

RESUMEN

The Aleuria aurantia lectin (AAL) derived from orange peel fungus contains five fucose-binding sites that recognizes fucose bound in α-1,2, α-1,3, α-1,4, and α-1,6 linkages to N-acetylglucosamine and galactose. Recently, we have created several recombinant AAL (rAAL) proteins that had altered binding affinity to fucose linkages. In this report, we further characterize the binding specificity of one of the mutated lectins, N224Q lectin. This lectin was characterized by lectin Western blotting, surface plasmon resonance, and glycan microarray and shown to have increased binding to fucosylated glycan. Subsequently, we used this lectin to identify secreted fucosylated glycoproteins from a fetal hepatic cell line. Proteomic analysis revealed several glycoproteins secreted by the fetal cell line that were bound by N224Q lectin. These findings were confirmed by subsequent proteomic analysis of human serum from control patients or patients with hepatocellular carcinoma. These represent candidate oncofetal markers for liver cancer.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Fucosa/metabolismo , Glicoproteínas/metabolismo , Lectinas/metabolismo , Neoplasias Hepáticas/metabolismo , Polisacáridos/metabolismo , Ascomicetos/química , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/diagnóstico , Línea Celular , Células Cultivadas , Fucosa/análisis , Glicoproteínas/análisis , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Lectinas/química , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/diagnóstico , Polisacáridos/química , Unión Proteica , Proteómica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
17.
Nucleic Acids Res ; 42(Web Server issue): W227-33, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24848013

RESUMEN

Structure validation has become a major issue in the structural biology community, and an essential step is checking the ligand structure. This paper introduces MotiveValidator, a web-based application for the validation of ligands and residues in PDB or PDBx/mmCIF format files provided by the user. Specifically, MotiveValidator is able to evaluate in a straightforward manner whether the ligand or residue being studied has a correct annotation (3-letter code), i.e. if it has the same topology and stereochemistry as the model ligand or residue with this annotation. If not, MotiveValidator explicitly describes the differences. MotiveValidator offers a user-friendly, interactive and platform-independent environment for validating structures obtained by any type of experiment. The results of the validation are presented in both tabular and graphical form, facilitating their interpretation. MotiveValidator can process thousands of ligands or residues in a single validation run that takes no more than a few minutes. MotiveValidator can be used for testing single structures, or the analysis of large sets of ligands or fragments prepared for binding site analysis, docking or virtual screening. MotiveValidator is freely available via the Internet at http://ncbr.muni.cz/MotiveValidator.


Asunto(s)
Sustancias Macromoleculares/química , Programas Informáticos , Acetilglucosamina/química , Sitios de Unión , Ácido Cólico/química , Efrina-B3/química , Glicoproteínas/química , Internet , Ligandos , Proteínas/química
18.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 3): 442-53, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25760594

RESUMEN

The Aspergillus fumigatus lectin AFL was recently described as a new member of the AAL lectin family. As a lectin from an opportunistic pathogen, it might play an important role in the interaction of the pathogen with the human host. A detailed study of structures of AFL complexed with several monosaccharides and oligosaccharides, including blood-group epitopes, was combined with affinity data from SPR and discussed in the context of previous findings. Its six binding sites are non-equivalent, and owing to minor differences in amino-acid composition they exhibit a marked difference in specific ligand recognition. AFL displays a high affinity in the micromolar range towards oligosaccharides which were detected in plants and also those bound on the human epithelia. All of these results indicate AFL to be a complex member of the lectin family and a challenging target for future medical research and, owing to its binding properties, a potentially useful tool in specific biotechnological applications.


Asunto(s)
Aspergillus fumigatus/química , Proteínas Fúngicas/química , Lectinas/química , Oligosacáridos/química , Epitelio , Humanos , Estructura Terciaria de Proteína
19.
Sensors (Basel) ; 15(1): 1945-53, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25602268

RESUMEN

Antibodies against Pseudomonas aeruginosa (PA) lectin, PAIIL, which is a virulence factor mediating the bacteria binding to epithelium cells, were prepared in chickens and purified from egg yolks. To examine these antibodies as a prophylactic agent preventing the adhesion of PA we developed a well plate assay based on fluorescently labeled bacteria and immortalized epithelium cell lines derived from normal and cystic fibrosis (CF) human lungs. The antibodies significantly inhibited bacteria adhesion (up to 50%) in both cell lines. In agreement with in vivo data, our plate assay showed higher susceptibility of CF cells towards the PA adhesion as compared to normal epithelium. This finding proved the reliability of the developed experimental system.


Asunto(s)
Adhesión Bacteriana , Bioensayo/métodos , Pseudomonas aeruginosa/citología , Animales , Western Blotting , Calibración , Pollos , Células Epiteliales/citología , Humanos , Lectinas/metabolismo , Espectrometría de Fluorescencia , Coloración y Etiquetado , Factores de Tiempo
20.
J Struct Biol ; 187(2): 174-186, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24937760

RESUMEN

The crystal structure of the N-terminal domain of the RNA polymerase δ subunit (Nδ) from Bacillus subtilis solved at a resolution of 2.0Å is compared with the NMR structure determined previously. The molecule crystallizes in the space group C222(1) with a dimer in the asymmetric unit. Importantly, the X-ray structure exhibits significant differences from the lowest energy NMR structure. In addition to the overall structure differences, structurally important ß sheets found in the NMR structure are not present in the crystal structure. We systematically investigated the cause of the discrepancies between the NMR and X-ray structures of Nδ, addressing the pH dependence, presence of metal ions, and crystal packing forces. We convincingly showed that the crystal packing forces, together with the presence of Ni(2+) ions, are the main reason for such a difference. In summary, the study illustrates that the two structural approaches may give unequal results, which need to be interpreted with care to obtain reliable structural information in terms of biological relevance.


Asunto(s)
Cristalografía por Rayos X/métodos , ARN Polimerasas Dirigidas por ADN/química , Resonancia Magnética Nuclear Biomolecular/métodos , Conformación Proteica , Secuencia de Aminoácidos , Bacillus subtilis/enzimología , Concentración de Iones de Hidrógeno , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA