Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Chem Rev ; 123(9): 5702-5754, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-36692850

RESUMEN

Enzymatic carbon dioxide fixation is one of the most important metabolic reactions as it allows the capture of inorganic carbon from the atmosphere and its conversion into organic biomass. However, due to the often unfavorable thermodynamics and the difficulties associated with the utilization of CO2, a gaseous substrate that is found in comparatively low concentrations in the atmosphere, such reactions remain challenging for biotechnological applications. Nature has tackled these problems by evolution of dedicated CO2-fixing enzymes, i.e., carboxylases, and embedding them in complex metabolic pathways. Biotechnology employs such carboxylating and decarboxylating enzymes for the carboxylation of aromatic and aliphatic substrates either by embedding them into more complex reaction cascades or by shifting the reaction equilibrium via reaction engineering. This review aims to provide an overview of natural CO2-fixing enzymes and their mechanistic similarities. We also discuss biocatalytic applications of carboxylases and decarboxylases for the synthesis of valuable products and provide a separate summary of strategies to improve the efficiency of such processes. We briefly summarize natural CO2 fixation pathways, provide a roadmap for the design and implementation of artificial carbon fixation pathways, and highlight examples of biocatalytic cascades involving carboxylases. Additionally, we suggest that biochemical utilization of reduced CO2 derivates, such as formate or methanol, represents a suitable alternative to direct use of CO2 and provide several examples. Our discussion closes with a techno-economic perspective on enzymatic CO2 fixation and its potential to reduce CO2 emissions.


Asunto(s)
Atmósfera , Dióxido de Carbono , Biocatálisis , Biomasa , Biotecnología
2.
Chembiochem ; : e202400631, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39314172

RESUMEN

Light-dependent fatty acid photodecarboxylases (FAPs) hold significant potential for biotechnology, due to their capability to produce alka(e)nes directly from the corresponding (un)saturated natural fatty acids requiring light as the only reagent. This study expands the family of FAPs through cavity-based enzyme discovery methods. Thirty enzyme candidates with potential photodecarboxylation activity were identified by matching the cavities of four related template structures against the Protein Data Bank's flavoproteins, a library of proteins identified via the Foldseek Search Server, and homology models of sequences resulting from BLAST. Subsequent docking experiments narrowed this library to ten promising enzymes, which were expressed and assessed in vitro, identifying four photodecarboxylases. Out of these enzymes, the GMC oxidoreductase from Coccomyxa sp. Obi (CoFAP) was characterized in detail, which revealed high activity in the decarboxylation reactions of palmitic acid and octanoic acid and a broad pH tolerance (pH 6.5-9.5).

3.
Chem Rev ; 122(1): 1052-1126, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34846124

RESUMEN

Biocatalysis, using enzymes for organic synthesis, has emerged as powerful tool for the synthesis of active pharmaceutical ingredients (APIs). The first industrial biocatalytic processes launched in the first half of the last century exploited whole-cell microorganisms where the specific enzyme at work was not known. In the meantime, novel molecular biology methods, such as efficient gene sequencing and synthesis, triggered breakthroughs in directed evolution for the rapid development of process-stable enzymes with broad substrate scope and good selectivities tailored for specific substrates. To date, enzymes are employed to enable shorter, more efficient, and more sustainable alternative routes toward (established) small molecule APIs, and are additionally used to perform standard reactions in API synthesis more efficiently. Herein, large-scale synthetic routes containing biocatalytic key steps toward >130 APIs of approved drugs and drug candidates are compared with the corresponding chemical protocols (if available) regarding the steps, reaction conditions, and scale. The review is structured according to the functional group formed in the reaction.


Asunto(s)
Biocatálisis , Preparaciones Farmacéuticas
4.
Angew Chem Int Ed Engl ; 61(17): e202117103, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35188997

RESUMEN

The concurrent operation of chemical and biocatalytic reactions in one pot is still a challenging task, and, in particular for chemical photocatalysts, examples besides simple cofactor recycling systems are rare. However, especially due to the complementary chemistry that the two fields of catalysis promote, their combination in one pot has the potential to unlock intriguing, unprecedented overall reactivities. Herein we demonstrate a concurrent biocatalytic reduction and photocatalytic oxidation process. Specifically, the enantioselective biocatalytic sulfoxide reduction using (S)-selective methionine sulfoxide reductases was coupled to an unselective light-dependent sulfoxidation. Protochlorophyllide was established as a new green photocatalyst for the sulfoxidation. Overall, a cyclic deracemization process to produce nonracemic sulfoxides was achieved and the target compounds were obtained with excellent conversions (up to 91 %) and superb optical purity (>99 % ee).


Asunto(s)
Sulfóxidos , Oxidación-Reducción , Sulfóxidos/química
5.
Angew Chem Int Ed Engl ; 61(40): e202207971, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-35921249

RESUMEN

Many biocatalytic redox reactions depend on the cofactor NAD(P)H, which may be provided by dedicated recycling systems. Exploiting light and water for NADPH-regeneration as it is performed, e.g. by cyanobacteria, is conceptually very appealing due to its high atom economy. However, the current use of cyanobacteria is limited, e.g. by challenging and time-consuming heterologous enzyme expression in cyanobacteria as well as limitations of substrate or product transport through the cell wall. Here we establish a transmembrane electron shuttling system propelled by the cyanobacterial photosynthesis to drive extracellular NAD(P)H-dependent redox reactions. The modular photo-electron shuttling (MPS) overcomes the need for cloning and problems associated with enzyme- or substrate-toxicity and substrate uptake. The MPS was demonstrated on four classes of enzymes with 19 enzymes and various types of substrates, reaching conversions of up to 99 % and giving products with >99 % optical purity.


Asunto(s)
Cianobacterias , Electrones , Biocatálisis , Cianobacterias/metabolismo , NAD/metabolismo , NADP/metabolismo , Oxidación-Reducción , Agua/metabolismo
6.
Angew Chem Int Ed Engl ; 60(13): 6965-6969, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33529432

RESUMEN

Controlling the selectivity of a chemical reaction with external stimuli is common in thermal processes, but rare in visible-light photocatalysis. Here we show that the redox potential of a carbon nitride photocatalyst (CN-OA-m) can be tuned by changing the irradiation wavelength to generate electron holes with different oxidation potentials. This tuning was the key to realizing photo-chemo-enzymatic cascades that give either the (S)- or the (R)-enantiomer of phenylethanol. In combination with an unspecific peroxygenase from Agrocybe aegerita, green light irradiation of CN-OA-m led to the enantioselective hydroxylation of ethylbenzene to (R)-1-phenylethanol (99 % ee). In contrast, blue light irradiation triggered the photocatalytic oxidation of ethylbenzene to acetophenone, which in turn was enantioselectively reduced with an alcohol dehydrogenase from Rhodococcus ruber to form (S)-1-phenylethanol (93 % ee).


Asunto(s)
Acetofenonas/química , Alcohol Deshidrogenasa/química , Derivados del Benceno/química , Oxigenasas de Función Mixta/química , Nitrilos/química , Alcohol Feniletílico/química , Acetofenonas/metabolismo , Agrocybe/enzimología , Alcohol Deshidrogenasa/metabolismo , Derivados del Benceno/metabolismo , Catálisis , Luz , Oxigenasas de Función Mixta/metabolismo , Estructura Molecular , Nitrilos/metabolismo , Oxidación-Reducción , Alcohol Feniletílico/metabolismo , Procesos Fotoquímicos , Rhodococcus/enzimología , Estereoisomerismo
7.
Angew Chem Int Ed Engl ; 57(11): 2864-2868, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29384246

RESUMEN

Various flavoprotein oxidases were recently shown to oxidize primary thiols. Herein, this reactivity is extended to sec-thiols by using structure-guided engineering of 5-(hydroxymethyl)furfural oxidase (HMFO). The variants obtained were employed for the oxidative kinetic resolution of racemic sec-thiols, thus yielding the corresponding thioketones and nonreacted R-configured thiols with excellent enantioselectivities (E≥200). The engineering strategy applied went beyond the classic approach of replacing bulky amino acid residues with smaller ones, as the active site was additionally enlarged by a newly introduced Thr residue. This residue established a hydrogen-bonding interaction with the substrates, as verified in the crystal structure of the variant. These strategies unlocked HMFO variants for the enantioselective oxidation of a range of sec-thiols.


Asunto(s)
Escherichia coli/enzimología , Furaldehído/análogos & derivados , Mutagénesis Sitio-Dirigida , Oxidorreductasas/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Furaldehído/metabolismo , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida/métodos , Oxidación-Reducción , Oxidorreductasas/genética , Mutación Puntual , Estereoisomerismo , Compuestos de Sulfhidrilo/química
8.
Molecules ; 22(12)2017 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-29231859

RESUMEN

The oxidation of alcohols to the corresponding carbonyl or carboxyl compounds represents a convenient strategy for the selective introduction of electrophilic carbon centres into carbohydrate-based starting materials. The O2-dependent oxidation of prim-alcohols by flavin-containing alcohol oxidases often yields mixtures of aldehyde and carboxylic acid, which is due to "over-oxidation" of the aldehyde hydrate intermediate. In order to directly convert alcohols into carboxylic acids, rational engineering of 5-(hydroxymethyl)furfural oxidase was performed. In an attempt to improve the binding of the aldehyde hydrate in the active site to boost aldehyde-oxidase activity, two active-site residues were exchanged for hydrogen-bond-donating and -accepting amino acids. Enhanced over-oxidation was demonstrated and Michaelis-Menten kinetics were performed to corroborate these findings.


Asunto(s)
Oxidorreductasas de Alcohol/química , Alcoholes/química , Ácidos Carboxílicos/química , Flavoproteínas/química , Aldehídos/química , Catálisis , Dominio Catalítico , Escherichia coli , Flavinas/química , Furaldehído/análogos & derivados , Furaldehído/química , Enlace de Hidrógeno , Cinética , Oxidación-Reducción , Conformación Proteica
9.
Chemistry ; 20(5): 1403-9, 2014 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-24382795

RESUMEN

To develop a nicotinamide-independent single flavoenzyme system for the asymmetric bioreduction of C=C bonds, four types of hydrogen donor, encompassing more than 50 candidates, were investigated. Six highly potent, cheap, and commercially available co-substrates were identified that (under the optimized conditions) resulted in conversions and enantioselectivities comparable with, or even superior to, those obtained with traditional two-enzyme nicotinamide adenine dinucleotide phosphate (NAD(P)H)-recycling systems.


Asunto(s)
Hidrógeno/química , NAD/química , Oxidorreductasas/metabolismo , Biocatálisis , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Carbono/química , Oxidación-Reducción , Oxidorreductasas/química , Estereoisomerismo , Especificidad por Sustrato
10.
Adv Synth Catal ; 356(8): 1878-1882, 2014 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-26190962

RESUMEN

Asymmetric bioreduction of an (E)-ß-cyano-2,4-dienoic acid derivative by ene-reductases allowed a shortened access to a precursor of pregabalin [(S)-3-(aminomethyl)-5-methylhexanoic acid] possessing the desired configuration in up to 94% conversion and >99% ee. Deuterium labelling studies showed that the nitrile moiety was the preferred activating/anchor group in the active site of the enzyme over the carboxylic acid or the corresponding methyl ester.

11.
Biotechnol Lett ; 36(6): 1329-33, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24563324

RESUMEN

The bioreduction and disproportionation of cyclohex-2-enone catalyzed by Old Yellow Enzyme 1 was investigated in presence of organic (co)solvents. Whereas the NADH-dependent bioreduction activity strongly decreased at elevated co-solvent concentrations due to the insolubility of the nicotinamide-cofactor, the NADH-free disproportionation was significantly improved in water-immiscible organic co-solvents at 90 % (v/v) with near-quantitative conversion. This positive effect was attributed to removal of the inhibiting co-product, phenol, from the enzyme's active site. The best co-solvents show high lipophilicity (logP) and a high potential to solubilize phenol (Kphenol). As a predictive parameter, the ratio of logP/Kphenol should be preferably ≥100.


Asunto(s)
Ciclohexanonas/metabolismo , NADPH Deshidrogenasa/metabolismo , Biotransformación , NAD/metabolismo , Oxidación-Reducción , Solventes
12.
Biotechnol Bioeng ; 110(12): 3085-92, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23794404

RESUMEN

Eleven flavoproteins from the old yellow enzyme family were found to catalyze the disproportionation ("dismutation") of conjugated enones. Incomplete conversions, which were attributed to enzyme inhibition by the co-product phenol could be circumvented via in situ co-product removal by scavenging the phenol using the polymeric adsorbent MP-carbonate. The optimized system allowed to reduce an alkene activated by ester groups in a "coupled-substrate" approach via nicotinamide-free hydrogen transfer with >90% conversion and complete stereoselectivity.


Asunto(s)
Alcanos/metabolismo , Coenzimas/metabolismo , Dinitrocresoles/metabolismo , Flavoproteínas/metabolismo , Oxidorreductasas/metabolismo , Inhibidores Enzimáticos/metabolismo , Niacinamida/metabolismo , Oxidación-Reducción , Fenol/metabolismo
13.
J Org Chem ; 78(4): 1525-33, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23316696

RESUMEN

The asymmetric bioreduction of a library of ß-cyanoacrylate esters using ene-reductases was studied with the aim to provide a biocatalytic route to precursors for GABA analogues, such as pregabalin. The stereochemical outcome could be controlled by substrate-engineering through size-variation of the ester moiety and by employing stereochemically pure (E)- or (Z)-isomers, which allowed to access both enantiomers of each product in up to quantitative conversion in enantiomerically pure form. In addition, stereoselectivities and conversions could be improved by mutant variants of OPR1, and the utility of the system was demonstrated by preparative-scale applications.


Asunto(s)
Cianoacrilatos/química , Oxidorreductasas/química , Ácido gamma-Aminobutírico/análogos & derivados , Biocatálisis , Ésteres , Pregabalina , Estereoisomerismo , Ácido gamma-Aminobutírico/síntesis química , Ácido gamma-Aminobutírico/química
14.
ACS Catal ; 13(21): 14324-14326, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37942271

RESUMEN

[This corrects the article DOI: 10.1021/acscatal.2c04444.].

15.
Chemistry ; 18(33): 10362-7, 2012 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-22736443

RESUMEN

The degree of C=C bond activation in the asymmetric bioreduction of α,ß-unsaturated carboxylic esters by ene-reductases was studied, and general recommendations to render these "borderline-substrates" more reactive towards enzymatic reduction are proposed. The concept of "supported substrate activation" was developed. In general, an additional α-halogenated substituent proved to be beneficial for enzymatic activity, whereas ß-alkyl or ß-aryl substituents were detrimental for the reactivity of nonhalogenated substrates, and α-cyano groups showed little effect. The alcohol moiety of the ester functionality was found to have a strong influence on the reaction rate. Overall, activities were determined by both steric and electronic effects.


Asunto(s)
Ácidos Carboxílicos/química , Oxidorreductasas/química , Biocatálisis , Ésteres , Estructura Molecular , Estereoisomerismo , Especificidad por Sustrato
16.
ACS Catal ; 12(22): 14040-14049, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36439034

RESUMEN

The challenges of light-dependent biocatalytic transformations of lipophilic substrates in aqueous media are manifold. For instance, photolability of the catalyst as well as insufficient light penetration into the reaction vessel may be further exacerbated by a heterogeneously dispersed substrate. Light penetration may be addressed by performing the reaction in continuous flow, which allows two modes of applying the catalyst: (i) heterogeneously, immobilized on a carrier, which requires light-permeable supports, or (ii) homogeneously, dissolved in the reaction mixture. Taking the light-dependent photodecarboxylation of palmitic acid catalyzed by fatty-acid photodecarboxylase from Chlorella variabilis (CvFAP) as a showcase, strategies for the transfer of a photoenzyme-catalyzed reaction into continuous flow were identified. A range of different supports were evaluated for the immobilization of CvFAP, whereby Eupergit C250 L was the carrier of choice. As the photostability of the catalyst was a limiting factor, a homogeneous system was preferred instead of employing the heterogenized enzyme. This implied that photolabile enzymes may preferably be applied in solution if repair mechanisms cannot be provided. Furthermore, when comparing different wavelengths and light intensities, extinction coefficients may be considered to ensure comparable absorption at each wavelength. Employing homogeneous conditions in the CvFAP-catalyzed photodecarboxylation of palmitic acid afforded a space-time yield unsurpassed by any reported batch process (5.7 g·L-1·h-1, 26.9 mmol·L-1·h-1) for this reaction, demonstrating the advantage of continuous flow in attaining higher productivity of photobiocatalytic processes.

17.
Angew Chem Weinheim Bergstr Ger ; 134(17): e202117103, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38505243

RESUMEN

The concurrent operation of chemical and biocatalytic reactions in one pot is still a challenging task, and, in particular for chemical photocatalysts, examples besides simple cofactor recycling systems are rare. However, especially due to the complementary chemistry that the two fields of catalysis promote, their combination in one pot has the potential to unlock intriguing, unprecedented overall reactivities. Herein we demonstrate a concurrent biocatalytic reduction and photocatalytic oxidation process. Specifically, the enantioselective biocatalytic sulfoxide reduction using (S)-selective methionine sulfoxide reductases was coupled to an unselective light-dependent sulfoxidation. Protochlorophyllide was established as a new green photocatalyst for the sulfoxidation. Overall, a cyclic deracemization process to produce nonracemic sulfoxides was achieved and the target compounds were obtained with excellent conversions (up to 91 %) and superb optical purity (>99 % ee).

18.
Angew Chem Weinheim Bergstr Ger ; 134(40): e202207971, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-38505002

RESUMEN

Many biocatalytic redox reactions depend on the cofactor NAD(P)H, which may be provided by dedicated recycling systems. Exploiting light and water for NADPH-regeneration as it is performed, e.g. by cyanobacteria, is conceptually very appealing due to its high atom economy. However, the current use of cyanobacteria is limited, e.g. by challenging and time-consuming heterologous enzyme expression in cyanobacteria as well as limitations of substrate or product transport through the cell wall. Here we establish a transmembrane electron shuttling system propelled by the cyanobacterial photosynthesis to drive extracellular NAD(P)H-dependent redox reactions. The modular photo-electron shuttling (MPS) overcomes the need for cloning and problems associated with enzyme- or substrate-toxicity and substrate uptake. The MPS was demonstrated on four classes of enzymes with 19 enzymes and various types of substrates, reaching conversions of up to 99 % and giving products with >99 % optical purity.

19.
ACS Catal ; 12(24): 15668-15674, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-37180375

RESUMEN

The synthesis of aldehydes from carboxylic acids has long been a challenge in chemistry. In contrast to the harsh chemically driven reduction, enzymes such as carboxylic acid reductases (CARs) are considered appealing biocatalysts for aldehyde production. Although structures of single- and didomains of microbial CARs have been reported, to date no full-length protein structure has been elucidated. In this study, we aimed to obtain structural and functional information regarding the reductase (R) domain of a CAR from the fungus Neurospora crassa (Nc). The NcCAR R-domain revealed activity for N-acetylcysteamine thioester (S-(2-acetamidoethyl) benzothioate), which mimics the phosphopantetheinylacyl-intermediate and can be anticipated as the minimal substrate for thioester reduction by CARs. The determined crystal structure of the NcCAR R-domain reveals a tunnel that putatively harbors the phosphopantetheinylacyl-intermediate, which is in good agreement with docking experiments performed with the minimal substrate. In vitro studies were performed with this highly purified R-domain and NADPH, demonstrating carbonyl reduction activity. The R-domain was able to accept not only a simple aromatic ketone but also benzaldehyde and octanal, which are typically considered to be the final product of carboxylic acid reduction by CAR. Also, the full-length NcCAR reduced aldehydes to primary alcohols. In conclusion, aldehyde overreduction can no longer be attributed exclusively to the host background.

20.
ACS Cent Sci ; 7(1): 55-71, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33532569

RESUMEN

Biocatalysis, using defined enzymes for organic transformations, has become a common tool in organic synthesis, which is also frequently applied in industry. The generally high activity and outstanding stereo-, regio-, and chemoselectivity observed in many biotransformations are the result of a precise control of the reaction in the active site of the biocatalyst. This control is achieved by exact positioning of the reagents relative to each other in a fine-tuned 3D environment, by specific activating interactions between reagents and the protein, and by subtle movements of the catalyst. Enzyme engineering enables one to adapt the catalyst to the desired reaction and process. A well-filled biocatalytic toolbox is ready to be used for various reactions. Providing nonnatural reagents and conditions and evolving biocatalysts enables one to play with the myriad of options for creating novel transformations and thereby opening new, short pathways to desired target molecules. Combining several biocatalysts in one pot to perform several reactions concurrently increases the efficiency of biocatalysis even further.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA