Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 620(7974): 595-599, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37558871

RESUMEN

Migratory songbirds have the remarkable ability to extract directional information from the Earth's magnetic field1,2. The exact mechanism of this light-dependent magnetic compass sense, however, is not fully understood. The most promising hypothesis focuses on the quantum spin dynamics of transient radical pairs formed in cryptochrome proteins in the retina3-5. Frustratingly, much of the supporting evidence for this theory is circumstantial, largely because of the extreme challenges posed by genetic modification of wild birds. Drosophila has therefore been recruited as a model organism, and several influential reports of cryptochrome-mediated magnetic field effects on fly behaviour have been widely interpreted as support for a radical pair-based mechanism in birds6-23. Here we report the results of an extensive study testing magnetic field effects on 97,658 flies moving in a two-arm maze and on 10,960 flies performing the spontaneous escape behaviour known as negative geotaxis. Under meticulously controlled conditions and with vast sample sizes, we have been unable to find evidence for magnetically sensitive behaviour in Drosophila. Moreover, after reassessment of the statistical approaches and sample sizes used in the studies that we tried to replicate, we suggest that many-if not all-of the original results were false positives. Our findings therefore cast considerable doubt on the existence of magnetic sensing in Drosophila and thus strongly suggest that night-migratory songbirds remain the organism of choice for elucidating the mechanism of light-dependent magnetoreception.


Asunto(s)
Drosophila melanogaster , Campos Magnéticos , Resultados Negativos , Animales , Migración Animal , Criptocromos/metabolismo , Pájaros Cantores/fisiología , Drosophila melanogaster/fisiología , Modelos Animales , Reacción de Fuga , Aprendizaje por Laberinto , Tamaño de la Muestra , Luz
2.
Proc Natl Acad Sci U S A ; 120(28): e2301153120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399422

RESUMEN

Night-migratory songbirds have a light-dependent magnetic compass sense, the mechanism of which is thought to depend on the photochemical formation of radical pairs in cryptochrome (Cry) proteins located in the retina. The finding that weak radiofrequency (RF) electromagnetic fields can prevent birds from orienting in the Earth's magnetic field has been regarded as a diagnostic test for this mechanism and as a potential source of information on the identities of the radicals. The maximum frequency that could cause such disorientation has been predicted to lie between 120 and 220 MHz for a flavin-tryptophan radical pair in Cry. Here we show that the magnetic orientation capabilities of Eurasian blackcaps (Sylvia atricapilla) are not affected by RF noise in the frequency bands 140 to 150 MHz and 235 to 245 MHz. From a consideration of its internal magnetic interactions, we argue that RF field effects on a flavin-containing radical-pair sensor should be approximately independent of frequency up to 116 MHz and that birds' sensitivity to RF disorientation should fall by about two orders of magnitude when the frequency exceeds 116 MHz. Taken together with our earlier finding that 75 to 85 MHz RF fields disrupt the magnetic orientation of blackcaps, these results provide compelling evidence that the magnetic compass of migratory birds operates by a radical pair mechanism.


Asunto(s)
Pájaros Cantores , Taxia , Animales , Pájaros Cantores/metabolismo , Procesos Fotoquímicos , Migración Animal , Campos Magnéticos , Criptocromos/metabolismo
3.
Plant Physiol ; 195(1): 306-325, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38330164

RESUMEN

Marine photosynthetic (micro)organisms drive multiple biogeochemical cycles and display a large diversity. Among them, the bloom-forming, free-living dinoflagellate Prorocentrum cordatum CCMP 1329 (formerly P. minimum) stands out with its distinct cell biological features. Here, we obtained insights into the structural properties of the chloroplast and the photosynthetic machinery of P. cordatum using microscopic and proteogenomic approaches. High-resolution FIB/SEM analysis revealed a single large chloroplast (∼40% of total cell volume) with a continuous barrel-like structure, completely lining the inner face of the cell envelope and enclosing a single reticular mitochondrium, the Golgi apparatus, as well as diverse storage inclusions. Enriched thylakoid membrane fractions of P. cordatum were comparatively analyzed with those of the well-studied model-species Arabidopsis (Arabidopsis thaliana) using 2D BN DIGE. Strikingly, P. cordatum possessed a large photosystem-light harvesting megacomplex (>1.5 MDa), which is dominated by photosystems I and II (PSI, PSII), chloroplast complex I, and chlorophyll a-b binding light harvesting complex proteins. This finding parallels the absence of grana in its chloroplast and distinguishes from the predominant separation of PSI and PSII complexes in A. thaliana, indicating a different mode of flux balancing. Except for the core elements of the ATP synthase and the cytb6f-complex, the composition of the other complexes (PSI, PSII, and pigment-binding proteins, PBPs) of P. cordatum differed markedly from those of A. thaliana. Furthermore, a high number of PBPs was detected, accounting for a large share of the total proteomic data (∼65%) and potentially providing P. cordatum with flexible adaptation to changing light regimes.


Asunto(s)
Cloroplastos , Dinoflagelados , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema II , Proteínas Protozoarias , Cloroplastos/ultraestructura , Dinoflagelados/genética , Dinoflagelados/metabolismo , Dinoflagelados/ultraestructura , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Microscopía Electrónica de Rastreo , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Genoma de Protozoos/genética , Variación Genética
4.
5.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35012979

RESUMEN

Animals use geomagnetic fields for navigational cues, yet the sensory mechanism underlying magnetic perception remains poorly understood. One idea is that geomagnetic fields are physically transduced by magnetite crystals contained inside specialized receptor cells, but evidence for intracellular, biogenic magnetite in eukaryotes is scant. Certain bacteria produce magnetite crystals inside intracellular compartments, representing the most ancient form of biomineralization known and having evolved prior to emergence of the crown group of eukaryotes, raising the question of whether magnetite biomineralization in eukaryotes and prokaryotes might share a common evolutionary history. Here, we discover that salmonid olfactory epithelium contains magnetite crystals arranged in compact clusters and determine that genes differentially expressed in magnetic olfactory cells, contrasted to nonmagnetic olfactory cells, share ancestry with an ancient prokaryote magnetite biomineralization system, consistent with exaptation for use in eukaryotic magnetoreception. We also show that 11 prokaryote biomineralization genes are universally present among a diverse set of eukaryote taxa and that nine of those genes are present within the Asgard clade of archaea Lokiarchaeota that affiliates with eukaryotes in phylogenomic analysis. Consistent with deep homology, we present an evolutionary genetics hypothesis for magnetite formation among eukaryotes to motivate convergent approaches for examining magnetite-based magnetoreception, molecular origins of matrix-associated biomineralization processes, and eukaryogenesis.


Asunto(s)
Biomineralización/genética , Óxido Ferrosoférrico/química , Fenómenos Magnéticos , Animales , Evolución Biológica , Genómica , Magnetosomas/genética , Salmón
6.
J Biol Chem ; 296: 100793, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34019872

RESUMEN

K+-Cl- cotransporters (KCCs) play important roles in physiological processes such as inhibitory neurotransmission and cell-volume regulation. KCCs exhibit significant variations in K+ affinities, yet recent atomic structures demonstrated that K+- and Cl--binding sites are highly conserved, raising the question of whether additional structural elements may contribute to ion coordination. The termini and the large extracellular domain (ECD) of KCCs exhibit only low sequence identity and were already discussed as modulators of transport activity. Here, we used the extracellular loop 2 (EL2) that links transmembrane helices (TMs) 3 and 4, as a mechanism to modulate ECD folding. We compared consequences of point mutations in the K+-binding site on the function of WT KCC2 and in a KCC2 variant, in which EL2 was structurally altered by insertion of a IFYPYDVPDYAGYPYDVPDYAGSYPYDVPDYAAHAAA (3xHA) tag (36 amino acids). In WT KCC2, individual mutations of five residues in the K+-binding site resulted in a 2- to 3-fold decreased transport rate. However, the same mutations in the KCC2 variant with EL2 structurally altered by insertion of a 3xHA tag had no effect on transport activity. Homology models of mouse KCC2 with the 3xHA tag inserted into EL2 using ab initio prediction were generated. The models suggest subtle conformational changes occur in the ECD upon EL2 modification. These data suggest that a conformational change in the ECD, for example, by interaction with EL2, might be an elegant way to modulate the K+ affinity of the different isoforms in the KCC subfamily.


Asunto(s)
Simportadores/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Humanos , Transporte Iónico , Cinética , Ratones , Modelos Moleculares , Potasio/metabolismo , Conformación Proteica , Simportadores/química , Cotransportadores de K Cl
7.
Environ Microbiol ; 24(7): 3195-3211, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35590445

RESUMEN

Large quantities of organic matter are continuously deposited, and (a)biotic gradients intersect in the soil-rhizosphere, where biodegradation contributes to the global cycles of elements. The betaproteobacterial genus Aromatoleum comprises cosmopolitan, facultative denitrifying degradation specialists. Aromatoleum aromaticum. pCyN1 stands out for anaerobically decomposing plant-derived monoterpenes in addition to monoaromatic hydrocarbons, polar aromatics and aliphatics. The catabolic network's structure and flexibility in A. aromaticum pCyN1 were studied across 34 growth conditions by superimposing proteome profiles onto the manually annotated 4.37 Mbp genome. Strain pCyN1 employs three fundamentally different enzymes for C-H-bond cleavage at the methyl groups of p-cymene/4-ethyltoluene, toluene and p-cresol respectively. Regulation of degradation modules displayed substrate specificities ranging from narrow (toluene and cyclohexane carboxylate) via medium-wide (one module shared by p-cymene, 4-ethyltoluene, α-phellandrene, α-terpinene, γ-terpinene and limonene) to broad (central benzoyl-CoA pathway serving 16 aromatic substrates). Remarkably, three variants of ATP-dependent (class I) benzoyl-CoA reductase and four different ß-oxidation routes establish a degradation hub that accommodates the substrate diversity. The respiratory system displayed several conspicuous profiles, e.g. the presence of nitrous oxide reductase under oxic and of low-affinity oxidase under anoxic conditions. Overall, nutritional versatility in conjunction with network regulation endow A. aromaticum pCyN1 with broad adaptability.


Asunto(s)
Rhodocyclaceae , Tolueno , Anaerobiosis , Biodegradación Ambiental , Rhodocyclaceae/metabolismo , Tolueno/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-35019998

RESUMEN

The light-dependent magnetic compass sense of night-migratory songbirds can be disrupted by weak radiofrequency fields. This finding supports a quantum mechanical, radical-pair-based mechanism of magnetoreception as observed for isolated cryptochrome 4, a protein found in birds' retinas. The exact identity of the magnetically sensitive radicals in cryptochrome is uncertain in vivo, but their formation seems to require a bound flavin adenine dinucleotide chromophore and a chain of four tryptophan residues within the protein. Resulting from the hyperfine interactions of nuclear spins with the unpaired electrons, the sensitivity of the radicals to radiofrequency magnetic fields depends strongly on the number of magnetic nuclei (hydrogen and nitrogen atoms) they contain. Quantum-chemical calculations suggested that electromagnetic noise in the frequency range 75-85 MHz could give information about the identity of the radicals involved. Here, we show that broadband 75-85 MHz radiofrequency fields prevent a night-migratory songbird from using its magnetic compass in behavioural experiments. These results indicate that at least one of the components of the radical pair involved in the sensory process of avian magnetoreception must contain a substantial number of strong hyperfine interactions as would be the case if a flavin-tryptophan radical pair were the magnetic sensor.


Asunto(s)
Pájaros Cantores , Taxia , Migración Animal , Animales , Criptocromos/metabolismo , Flavinas , Campos Magnéticos , Pájaros Cantores/metabolismo , Triptófano
9.
J Exp Biol ; 225(19)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36111526

RESUMEN

Current evidence suggests that migratory animals extract map information from the geomagnetic field for true navigation. The sensory basis underlying this feat is elusive, but presumably involves magnetic particles. A common experimental manipulation procedure consists of pre-treating animals with a magnetic pulse, with the aim of re-magnetising particles to alter the internal representation of the external field prior to a navigation task. Although pulsing provoked deflected bearings in caged songbirds, analogous studies with free-flying songbirds yielded inconsistent results. Here, we pulsed European robins (Erithacus rubecula) at an offshore stopover site during spring migration and monitored their free-flight behaviour with a regional-scale network of radio-receiving stations. We found no pulse effect on departure probability, nocturnal departure timing departure direction or consistency of flight direction. This suggests either no use of the geomagnetic map by our birds, or that magnetic pulses do not affect the sensory system underlying geomagnetic map detection.


Asunto(s)
Pájaros Cantores , Migración Animal , Animales , Fenómenos Magnéticos , Magnetismo , Estaciones del Año
10.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33741621

RESUMEN

The betaproteobacterial degradation specialist Aromatoleum aromaticum EbN1T utilizes several plant-derived 3-phenylpropanoids coupled to denitrification. In vivo responsiveness of A. aromaticum EbN1T was studied by exposing nonadapted cells to distinct pulses (spanning 100 µM to 0.1 nM) of 3-phenylpropanoate, cinnamate, 3-(4-hydroxyphenyl)propanoate, or p-coumarate. Time-resolved, targeted transcript analyses via quantitative reverse transcription-PCR of four selected 3-phenylpropanoid genes revealed a response threshold of 30 to 50 nM for p-coumarate and 1 to 10 nM for the other three tested 3-phenylpropanoids. At these concentrations, transmembrane effector equilibration is attained by passive diffusion rather than active uptake via the ABC transporter, presumably serving the studied 3-phenylpropanoids as well as benzoate. Highly substrate-specific enzyme formation (EbA5316 to EbA5321 [EbA5316-21]) for the shared peripheral degradation pathway putatively involves the predicted TetR-type transcriptional repressor PprR. Accordingly, relative transcript abundances of ebA5316-21 are lower in succinate- and benzoate-grown wild-type cells than in an unmarked in-frame ΔpprR mutant. In trans-complementation of pprR into the ΔpprR background restored wild-type-like transcript levels. When adapted to p-coumarate, the three genotypes had relative transcript abundances similar to those of ebA5316-21 despite a significantly longer lag phase of the pprR-complemented mutant (∼100-fold higher pprR transcript level than the wild type). Notably, transcript levels of ebA5316-21 were ∼10- to 100-fold higher in p-coumarate- than succinate- or benzoate-adapted cells across all three genotypes. This indicates the additional involvement of an unknown transcriptional regulator. Furthermore, physiological, transcriptional, and (aromatic) acyl-coenzyme A ester intermediate analyses of the wild type and ΔpprR mutant grown with binary substrate mixtures suggest a mode of catabolite repression of superior order to PprR.IMPORTANCE Lignin is a ubiquitous heterobiopolymer built from a suite of 3-phenylpropanoid subunits. It accounts for more than 30% of the global plant dry material, and lignin-related compounds are increasingly released into the environment from anthropogenic sources, i.e., by wastewater effluents from the paper and pulp industry. Hence, following biological or industrial decomplexation of lignin, vast amounts of structurally diverse 3-phenylpropanoids enter terrestrial and aquatic habitats, where they serve as substrates for microbial degradation. This raises the question of what signaling systems environmental bacteria employ to detect these nutritionally attractive compounds and to adjust their catabolism accordingly. Moreover, determining in vivo response thresholds of an anaerobic degradation specialist such as A. aromaticum EbN1T for these aromatic compounds provides insights into the environmental fate of the latter, i.e., when they could escape biodegradation due to too low ambient concentrations.


Asunto(s)
Cinamatos/metabolismo , Ácidos Cumáricos/metabolismo , Lignina/metabolismo , Fenilpropionatos/metabolismo , Rhodocyclaceae/metabolismo , Biodegradación Ambiental
11.
J Bacteriol ; 202(5)2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31843798

RESUMEN

Anaerobic degradation of p-cresol (4-methylphenol) by the denitrifying betaproteobacterium Aromatoleum aromaticum EbN1 is regulated with high substrate specificity, presumed to be mediated by the predicted σ54-dependent two-component system PcrSR. An unmarked, in-frame ΔpcrSR deletion mutant showed reduced expression of the genes cmh (21-fold) and hbd (8-fold) that encode the two enzymes for initial oxidation of p-cresol to p-hydroxybenzoate compared to their expression in the wild type. The expression of cmh and hbd was restored by in trans complementation with pcrSR in the ΔpcrSR background to even higher levels than in the wild type. This is likely due to ∼200-/∼30-fold more transcripts of pcrSR in the complemented mutant. The in vivo responsiveness of A. aromaticum EbN1 to p-cresol was studied in benzoate-limited anaerobic cultures by the addition of p-cresol at various concentrations (from 100 µM down to 0.1 nM). Time-resolved transcript profiling by quantitative reverse transcription-PCR (qRT-PCR) revealed that the lowest p-cresol concentrations just affording cmh and hbd expression (response threshold) ranged between 1 and 10 nM, which is even more sensitive than the respective odor receptors of insects. A similar response threshold was determined for another alkylphenol, p-ethylphenol, which strain EbN1 anaerobically degrades via a different route and senses by the σ54-dependent one-component system EtpR. Based on these data and theoretical considerations, p-cresol or p-ethylphenol added as a single pulse (10 nM) requires less than a fraction of a second to reach equilibrium between intra- and extracellular space (∼20 molecules per cell), with an estimated Kd (dissociation constant) of <100 nM alkylphenol (p-cresol or p-ethylphenol) for its respective sensory protein (PcrS or EtpR).IMPORTANCE Alkylphenols (like p-cresol and p-ethylphenol) represent bulk chemicals for industrial syntheses. Besides massive local damage events, large-scale micropollution is likewise of environmental and health concern. Next to understanding how such pollutants can be degraded by microorganisms, it is also relevant to determine the microorganisms' lower threshold of responsiveness. Aromatoleum aromaticum EbN1 is a specialist in anaerobic degradation of aromatic compounds, employing a complex and substrate-specifically regulated catabolic network. The present study aims at verifying the predicted role of the PcrSR system in sensing p-cresol and at determining the threshold of responsiveness for alkylphenols. The findings have implications for the enigmatic persistence of dissolved organic matter (escape from biodegradation) and for the lower limits of aromatic compounds required for bacterial growth.


Asunto(s)
Anaerobiosis , Biodegradación Ambiental , Contaminantes Ambientales/química , Fenoles/química , Algoritmos , Regulación Bacteriana de la Expresión Génica , Modelos Teóricos , Mutación , Proteoma , Rhodocyclaceae/genética , Rhodocyclaceae/metabolismo , Transcriptoma
12.
Proc Biol Sci ; 287(1919): 20192788, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31964302

RESUMEN

Night-migratory songbirds can use geomagnetic information to navigate over thousands of kilometres with great precision. A crucial part of the magnetic 'map' information used by night-migratory songbirds is conveyed via the ophthalmic branches of the trigeminal nerves to the trigeminal brainstem complex, where magnetic-driven neuronal activation has been observed. However, it is not known how this information reaches the forebrain for further processing. Here, we show that the magnetically activated region in the trigeminal brainstem of migratory Eurasian blackcaps (Sylvia atricapilla) represents a morphologically distinctive neuronal population with an exclusive and previously undescribed projection to the telencephalic frontal nidopallium. This projection is clearly different from the known trigeminal somatosensory pathway that we also confirmed both by neuronal tracing and by a thorough morphometric analysis of projecting neurons. The new pathway we identified here represents part of a brain circuit that-based on the known nidopallial connectivities in birds-could potentially transmit magnetic 'map' information to key multisensory integration centres in the brain known to be critically involved in spatial memory formation, cognition and/or controlling executive behaviour, such as navigation, in birds.


Asunto(s)
Migración Animal , Encéfalo/fisiología , Pájaros Cantores/fisiología , Navegación Espacial , Animales , Ojo , Fenómenos Magnéticos , Magnetismo , Orientación , Nervio Trigémino
14.
J Biol Chem ; 293(44): 16984-16993, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30201606

RESUMEN

The pivotal role of K+-Cl- cotransporter 2 (KCC2) in inhibitory neurotransmission and severe human diseases fosters interest in understanding posttranslational regulatory mechanisms such as (de)phosphorylation. Here, the regulatory role of the five bona fide phosphosites Ser31, Thr34, Ser932, Thr999, and Thr1008 was investigated by the use of alanine and aspartate mutants. Tl+-based flux analyses in HEK-293 cells demonstrated increased transport activity for S932D (mimicking phosphorylation) and T1008A (mimicking dephosphorylation), albeit to a different extent. Increased activity was due to changes in intrinsic activity, as it was not caused by increased cell-surface abundance. Substitutions of Ser31, Thr34, or Thr999 had no effect. Additionally, we show that the indirect actions of the known KCC2 activators staurosporine and N-ethylmaleimide (NEM) involved multiple phosphosites. S31D, T34A, S932A/D, T999A, or T1008A/D abrogated staurosporine mediated stimulation, and S31A, T34D, or S932D abolished NEM-mediated stimulation. This demonstrates for the first time differential effects of staurosporine and NEM on KCC2. In addition, the staurosporine-mediated effects involved both KCC2 phosphorylation and dephosphorylation with Ser932 and Thr1008 being bona fide target sites. In summary, our data reveal a complex phosphoregulation of KCC2 that provides the transporter with a toolbox for graded activity and integration of different signaling pathways.


Asunto(s)
Simportadores/química , Simportadores/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Etilmaleimida/metabolismo , Células HEK293 , Humanos , Mutación , Fosforilación , Estaurosporina/metabolismo , Simportadores/genética
15.
Biophys J ; 113(3): 637-644, 2017 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-28793218

RESUMEN

Magnetotactic bacteria form assemblies of magnetic nanoparticles called magnetosomes. These magnetosomes are typically arranged in chains, but other forms of assemblies such as clusters can be observed in some species and genetic mutants. As such, the bacteria have developed as a model for the understanding of how organization of particles can influence the magnetic properties. Here, we use ferromagnetic resonance spectroscopy to measure the magnetic anisotropies in different strains of Magnetosprillum gryphiswaldense MSR-1, a bacterial species that is amendable to genetic mutations. We combine our experimental results with a model describing the spectra. The model includes chain imperfections and misalignments following a Fisher distribution function, in addition to the intrinsic magnetic properties of the magnetosomes. Therefore, by applying the model to analyze the ferromagnetic resonance data, the distribution of orientations in the bulk sample can be retrieved in addition to the average magnetosome arrangement. In this way, we quantitatively characterize the magnetosome arrangement in both wild-type cells and ΔmamJ mutants, which exhibit differing magnetosome organization.


Asunto(s)
Magnetosomas/metabolismo , Magnetospirillum/citología , Espectroscopía de Resonancia Magnética , Magnetospirillum/genética , Mutación
16.
Artículo en Inglés | MEDLINE | ID: mdl-28612234

RESUMEN

The radical-pair hypothesis of magnetoreception has gained a lot of momentum, since the flavoprotein cryptochrome was postulated as a structural candidate to host magnetically sensitive chemical reactions. Here, we first discuss behavioral tests using radio-frequency magnetic fields (0.1-10 MHz) to specifically disturb a radical-pair-based avian magnetic compass sense. While disorienting effects of broadband RF magnetic fields have been replicated independently in two competing labs, the effects of monochromatic RF magnetic fields administered at the electronic Larmor frequency (~1.3 MHz) are disparate. We give technical recommendations for future RF experiments. We then focus on two candidate magnetoreceptor proteins in birds, Cry1a and Cry1b, two splice variants of the same gene (Cry1). Immunohistochemical studies have identified Cry1a in the outer segments of the ultraviolet/violet-sensitive cone photoreceptors and Cry1b in the cytosol of retinal ganglion cells. The identification of the host neurons of these cryptochromes and their subcellular expression patterns presents an important advance, but much work lies ahead to gain some functional understanding. In particular, interaction partners of cryptochrome Cry1a and Cry1b remain to be identified. A candidate partner for Cry4 was previously suggested, but awaits independent replication.


Asunto(s)
Aves/fisiología , Criptocromos/metabolismo , Fenómenos Magnéticos , Animales , Criptocromos/genética , Campos Magnéticos , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Ganglionares de la Retina/metabolismo
18.
Proc Natl Acad Sci U S A ; 109(30): 12022-7, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22778440

RESUMEN

Over the past 50 y, behavioral experiments have produced a large body of evidence for the existence of a magnetic sense in a wide range of animals. However, the underlying sensory physiology remains poorly understood due to the elusiveness of the magnetosensory structures. Here we present an effective method for isolating and characterizing potential magnetite-based magnetoreceptor cells. In essence, a rotating magnetic field is employed to visually identify, within a dissociated tissue preparation, cells that contain magnetic material by their rotational behavior. As a tissue of choice, we selected trout olfactory epithelium that has been previously suggested to host candidate magnetoreceptor cells. We were able to reproducibly detect magnetic cells and to determine their magnetic dipole moment. The obtained values (4 to 100 fAm(2)) greatly exceed previous estimates (0.5 fAm(2)). The magnetism of the cells is due to a µm-sized intracellular structure of iron-rich crystals, most likely single-domain magnetite. In confocal reflectance imaging, these produce bright reflective spots close to the cell membrane. The magnetic inclusions are found to be firmly coupled to the cell membrane, enabling a direct transduction of mechanical stress produced by magnetic torque acting on the cellular dipole in situ. Our results show that the magnetically identified cells clearly meet the physical requirements for a magnetoreceptor capable of rapidly detecting small changes in the external magnetic field. This would also explain interference of ac powerline magnetic fields with magnetoreception, as reported in cattle.


Asunto(s)
Campos Electromagnéticos , Óxido Ferrosoférrico/metabolismo , Magnetismo , Mucosa Olfatoria/metabolismo , Células Receptoras Sensoriales/fisiología , Trucha , Migración Animal/fisiología , Animales , Procesamiento de Imagen Asistido por Computador , Microscopía Confocal , Microscopía Electrónica de Rastreo , Modelos Biológicos , Orientación/fisiología , Células Receptoras Sensoriales/ultraestructura , Especificidad de la Especie
19.
Adv Funct Mater ; 24(25): 3926-3932, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25866495

RESUMEN

One-dimensional magnetic nanostructures have magnetic properties superior to non-organized materials due to strong uniaxial shape anisotropy. Magnetosome chains in magnetotactic bacteria represent a biological paradigm of such magnet, where magnetite crystals synthesized in organelles called magnetosomes are arranged into linear chains. Two-dimensional synchrotron X-ray diffraction (XRD) is applied to cells of magnetotactic bacteria that are pre-aligned with a magnetic field to determine the crystallographic orientation of magnetosomes relative to the chain axis. The obtained pole figure patterns reveal a [111] fiber texture along the chain direction for magnetospirilla strains MSR-1 and AMB-1, whereas a [100] fiber texture is measured for Desulfovibrio magneticus strain RS-1. The [100] axis appears energetically unfavorable because it represents a magnetic hard axis in magnetite, but can be turned into an effective easy axis by particle elongation along [100] for aspect ratios higher than 1.25, consistent with aspect ratios in RS-1 magnetosomes determined earlier. The pronounced fiber textures can be explained either by a strain-specific biological control on crystal orientation at the chain level or by physical alignment effects due to intra-chain magnetic interactions. In this case, biological control of the axis of elongation would be sufficient to influence the crystallographic texture of the magnetosome chain.

20.
J R Soc Interface ; 21(214): 20230745, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38745460

RESUMEN

Migratory songbirds may navigate by extracting positional information from the geomagnetic field, potentially with a magnetic-particle-based receptor. Previous studies assessed this hypothesis experimentally by exposing birds to a strong but brief magnetic pulse aimed at remagnetizing the particles and evoking an altered behaviour. Critically, such studies were not ideally designed because they lacked an adequate sham treatment controlling for the induced electric field that is fundamentally associated with a magnetic pulse. Consequently, we designed a sham-controlled magnetic-pulse experiment, with sham and treatment pulse producing a similar induced electric field, while limiting the sham magnetic field to a value that is deemed insufficient to remagnetize particles. We tested this novel approach by pulsing more than 250 wild, migrating European robins (Erithacus rubecula) during two autumn seasons. After pulsing them, five traits of free-flight migratory behaviour were observed, but no effect of the pulse could be found. Notably, one of the traits, the migratory motivation of adults, was significantly affected in only one of the two study years. Considering the problem of reproducing experiments with wild animals, we recommend a multi-year approach encompassing large sample size, blinded design and built-in sham control to obtain future insights into the role of magnetic-particle-based magnetoreception in bird navigation.


Asunto(s)
Migración Animal , Pájaros Cantores , Animales , Pájaros Cantores/fisiología , Migración Animal/fisiología , Campos Magnéticos , Vuelo Animal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA