Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Psychiatry ; 26(8): 4066-4084, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33235333

RESUMEN

Valproate (VPA) has been used in the treatment of bipolar disorder since the 1990s. However, the therapeutic targets of VPA have remained elusive. Here we employ a preclinical model to identify the therapeutic targets of VPA. We find compounds that inhibit histone deacetylase proteins (HDACs) are effective in normalizing manic-like behavior, and that class I HDACs (e.g., HDAC1 and HDAC2) are most important in this response. Using an RNAi approach, we find that HDAC2, but not HDAC1, inhibition in the ventral tegmental area (VTA) is sufficient to normalize behavior. Furthermore, HDAC2 overexpression in the VTA prevents the actions of VPA. We used RNA sequencing in both mice and human induced pluripotent stem cells (iPSCs) derived from bipolar patients to further identify important molecular targets. Together, these studies identify HDAC2 and downstream targets for the development of novel therapeutics for bipolar mania.


Asunto(s)
Células Madre Pluripotentes Inducidas , Ácido Valproico , Animales , Histona Desacetilasa 2/genética , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Manía , Ratones , Ácido Valproico/farmacología
2.
Proc Natl Acad Sci U S A ; 114(22): E4462-E4471, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28500272

RESUMEN

The molecular pathogenesis of bipolar disorder (BPD) is poorly understood. Using human-induced pluripotent stem cells (hiPSCs) to unravel such mechanisms in polygenic diseases is generally challenging. However, hiPSCs from BPD patients responsive to lithium offered unique opportunities to discern lithium's target and hence gain molecular insight into BPD. By profiling the proteomics of BDP-hiPSC-derived neurons, we found that lithium alters the phosphorylation state of collapsin response mediator protein-2 (CRMP2). Active nonphosphorylated CRMP2, which binds cytoskeleton, is present throughout the neuron; inactive phosphorylated CRMP2, which dissociates from cytoskeleton, exits dendritic spines. CRMP2 elimination yields aberrant dendritogenesis with diminished spine density and lost lithium responsiveness (LiR). The "set-point" for the ratio of pCRMP2:CRMP2 is elevated uniquely in hiPSC-derived neurons from LiR BPD patients, but not with other psychiatric (including lithium-nonresponsive BPD) and neurological disorders. Lithium (and other pathway modulators) lowers pCRMP2, increasing spine area and density. Human BPD brains show similarly elevated ratios and diminished spine densities; lithium therapy normalizes the ratios and spines. Consistent with such "spine-opathies," human LiR BPD neurons with abnormal ratios evince abnormally steep slopes for calcium flux; lithium normalizes both. Behaviorally, transgenic mice that reproduce lithium's postulated site-of-action in dephosphorylating CRMP2 emulate LiR in BPD. These data suggest that the "lithium response pathway" in BPD governs CRMP2's phosphorylation, which regulates cytoskeletal organization, particularly in spines, modulating neural networks. Aberrations in the posttranslational regulation of this developmentally critical molecule may underlie LiR BPD pathogenesis. Instructively, examining the proteomic profile in hiPSCs of a functional agent-even one whose mechanism-of-action is unknown-might reveal otherwise inscrutable intracellular pathogenic pathways.


Asunto(s)
Trastorno Bipolar , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Litio/farmacología , Modelos Biológicos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Animales , Trastorno Bipolar/genética , Trastorno Bipolar/metabolismo , Trastorno Bipolar/fisiopatología , Química Encefálica , Calcio/metabolismo , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Proteómica
3.
Biomed Microdevices ; 14(5): 829-838, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22767243

RESUMEN

Access to unlimited numbers of live human neurons derived from stem cells offers unique opportunities for in vitro modeling of neural development, disease-related cellular phenotypes, and drug testing and discovery. However, to develop informative cellular in vitro assays, it is important to consider the relevant in vivo environment of neural tissues. Biomimetic 3D scaffolds are tools to culture human neurons under defined mechanical and physico-chemical properties providing an interconnected porous structure that may potentially enable a higher or more complex organization than traditional two-dimensional monolayer conditions. It is known that even minor variations in the internal geometry and mechanical properties of 3D scaffolds can impact cell behavior including survival, growth, and cell fate choice. In this report, we describe the design and engineering of 3D synthetic polyethylene glycol (PEG)-based and biodegradable gelatin-based scaffolds generated by a free form fabrication technique with precise internal geometry and elastic stiffnesses. We show that human neurons, derived from human embryonic stem (hESC) cells, are able to adhere to these scaffolds and form organoid structures that extend in three dimensions as demonstrated by confocal and electron microscopy. Future refinements of scaffold structure, size and surface chemistries may facilitate long term experiments and designing clinically applicable bioassays.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/ultraestructura , Neuronas/citología , Andamios del Tejido/química , Materiales Biomiméticos/química , Adhesión Celular , Células Cultivadas , Diseño de Equipo , Gelatina/química , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Confocal , Microscopía Electrónica de Rastreo , Polietilenglicoles/química
4.
J Vis Exp ; (170)2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33900299

RESUMEN

Human lung development and disease has been difficult to study due to the lack of biologically relevant in vitro model systems. Human induced pluripotent stem cells (hiPSCs) can be differentiated stepwise into 3D multicellular lung organoids, made of both epithelial and mesenchymal cell populations. We recapitulate embryonic developmental cues by temporally introducing a variety of growth factors and small molecules to efficiently generate definitive endoderm, anterior foregut endoderm, and subsequently lung progenitor cells. These cells are then embedded in growth factor reduced (GFR)-basement membrane matrix medium, allowing them to spontaneously develop into 3D lung organoids in response to external growth factors. These whole lung organoids (WLO) undergo early lung developmental stages including branching morphogenesis and maturation after exposure to dexamethasone, cyclic AMP and isobutylxanthine. WLOs possess airway epithelial cells expressing the markers KRT5 (basal), SCGB3A2 (club) and MUC5AC (goblet) as well as alveolar epithelial cells expressing HOPX (alveolar type I) and SP-C (alveolar type II). Mesenchymal cells are also present, including smooth muscle actin (SMA), and platelet-derived growth factor receptor A (PDGFRα). iPSC derived WLOs can be maintained in 3D culture conditions for many months and can be sorted for surface markers to purify a specific cell population. iPSC derived WLOs can also be utilized to study human lung development, including signaling between the lung epithelium and mesenchyme, to model genetic mutations on human lung cell function and development, and to determine the cytotoxicity of infective agents.


Asunto(s)
Células Epiteliales Alveolares/citología , Endodermo/citología , Células Madre Pluripotentes Inducidas/citología , Pulmón/citología , Organogénesis , Organoides/citología , Ingeniería de Tejidos/métodos , Células Epiteliales Alveolares/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular , Biología Evolutiva , Endodermo/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Pulmón/metabolismo , Organoides/metabolismo
5.
Curr Protoc Stem Cell Biol ; 54(1): e118, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32640120

RESUMEN

The normal development of the pulmonary system is critical to transitioning from placental-dependent fetal life to alveolar-dependent newborn life. Human lung development and disease have been difficult to study due to the lack of an in vitro model system containing cells from the large airways and distal alveolus. This article describes a system that allows human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) to differentiate and form three-dimensional (3D) structures that emulate the development, cytoarchitecture, and function of the lung ("organoids"), containing epithelial and mesenchymal cell populations, and including the production of surfactant and presence of ciliated cells. The organoids can also be invested with mesoderm derivatives, differentiated from the same human pluripotent stem cells, such as alveolar macrophages and vasculature. Such lung organoids may be used to study the impact of environmental modifiers and perturbagens (toxins, microbial or viral pathogens, alterations in microbiome) or the efficacy and safety of drugs, biologics, and gene transfer. © 2020 Wiley Periodicals LLC. Basic Protocol: hESC/hiPSC dissection, definitive endoderm formation, and lung progenitor cell induction.


Asunto(s)
Infecciones por Coronavirus/patología , Pulmón/citología , Organoides/citología , Neumonía Viral/patología , Infecciones del Sistema Respiratorio/patología , Betacoronavirus , COVID-19 , Técnicas de Cultivo de Célula , Diferenciación Celular , Infecciones por Coronavirus/terapia , Endodermo/citología , Células Madre Embrionarias Humanas/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Pulmón/crecimiento & desarrollo , Pulmón/fisiología , Modelos Biológicos , Pandemias , Modelación Específica para el Paciente , Neumonía Viral/terapia , Infecciones del Sistema Respiratorio/terapia , SARS-CoV-2 , Imagen de Lapso de Tiempo
6.
Sci Rep ; 9(1): 13450, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31530844

RESUMEN

Surfactant protein B (SFTPB) deficiency is a fatal disease affecting newborn infants. Surfactant is produced by alveolar type II cells which can be differentiated in vitro from patient specific induced pluripotent stem cell (iPSC)-derived lung organoids. Here we show the differentiation of patient specific iPSCs derived from a patient with SFTPB deficiency into lung organoids with mesenchymal and epithelial cell populations from both the proximal and distal portions of the human lung. We alter the deficiency by infecting the SFTPB deficient iPSCs with a lentivirus carrying the wild type SFTPB gene. After differentiating the mutant and corrected cells into lung organoids, we show expression of SFTPB mRNA during endodermal and organoid differentiation but the protein product only after organoid differentiation. We also show the presence of normal lamellar bodies and the secretion of surfactant into the cell culture medium in the organoids of lentiviral infected cells. These findings suggest that a lethal lung disease can be targeted and corrected in a human lung organoid model in vitro.


Asunto(s)
Terapia Genética/métodos , Células Madre Pluripotentes Inducidas/citología , Pulmón/citología , Proteinosis Alveolar Pulmonar/congénito , Proteína B Asociada a Surfactante Pulmonar/deficiencia , Diferenciación Celular , Células Epiteliales/fisiología , Fibroblastos/citología , Marcadores Genéticos , Proteínas Fluorescentes Verdes/genética , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Lentivirus/genética , Organoides , Proteinosis Alveolar Pulmonar/genética , Proteinosis Alveolar Pulmonar/terapia , Alveolos Pulmonares/citología , Proteína B Asociada a Surfactante Pulmonar/genética
7.
Results Probl Cell Differ ; 66: 265-282, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30209664

RESUMEN

The pathogenesis of bipolar disorder (BPD) is unknown. Using human-induced pluripotent stem cells (hiPSCs) to unravel pathological mechanisms in polygenic diseases is challenging, with few successful studies to date. However, hiPSCs from BPD patients responsive to lithium have offered unique opportunities to discern lithium's mechanism of action and hence gain insight into BPD pathology. By profiling the proteomics of BPD-hiPSC-derived neurons, we found that lithium alters the phosphorylation state of collapsin response mediator protein-2 (CRMP2). The "set point" for the ratio of pCRMP2:CRMP2 is elevated uniquely in hiPSC-derived neurons from lithium responsive (Li-R) BPD patients, but not other psychiatric and neurological disorders. Utilizing neurons differentiated from human patient stem cells as an in vitro platform, we were able to elucidate the mechanism driving the pathogenesis and pathophysiology of lithium-responsive BPD, heretofore unknown. Importantly, the findings in culture were validated in human postmortem material as well as in animal models of BPD behavior. These data suggest that the "lithium response pathway" in BPD governs CRMP2's phosphorylation, which regulates cytoskeletal organization, particularly in dendritic spines, leading to modulated neural networks that may underlie Li-R BPD pathogenesis. This chapter reviews the methodology of leveraging a functional agent, lithium, to identify unknown pathophysiological pathways with hiPSCs and how to translate this disease modeling approach to other neurological disorders.


Asunto(s)
Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/patología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Animales , Diferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas/patología , Litio/farmacología , Litio/uso terapéutico , Neuronas/efectos de los fármacos , Neuronas/patología
8.
Stem Cell Reports ; 7(3): 527-542, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27569059

RESUMEN

Controlled differentiation of human embryonic stem cells (hESCs) can be utilized for precise analysis of cell type identities during early development. We established a highly efficient neural induction strategy and an improved analytical platform, and determined proteomic and phosphoproteomic profiles of hESCs and their specified multipotent neural stem cell derivatives (hNSCs). This quantitative dataset (nearly 13,000 proteins and 60,000 phosphorylation sites) provides unique molecular insights into pluripotency and neural lineage entry. Systems-level comparative analysis of proteins (e.g., transcription factors, epigenetic regulators, kinase families), phosphorylation sites, and numerous biological pathways allowed the identification of distinct signatures in pluripotent and multipotent cells. Furthermore, as predicted by the dataset, we functionally validated an autocrine/paracrine mechanism by demonstrating that the secreted protein midkine is a regulator of neural specification. This resource is freely available to the scientific community, including a searchable website, PluriProt.


Asunto(s)
Diferenciación Celular , Neuronas/metabolismo , Fosfoproteínas/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteoma , Proteómica , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Células Cultivadas , Biología Computacional/métodos , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Neuronas/citología , Proteómica/métodos , Transducción de Señal , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA