Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Plant Sci ; 11: 630788, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33552114

RESUMEN

The mainly Australian grass genus Austrostipa (tribe Stipeae) comprising approximately 64 species represents a remarkable example of an evolutionary radiation. To investigate aspects of diversification, macro- and micromorphological variation in this genus, we conducted molecular phylogenetic and scanning electron microscopy (SEM) analyses including representatives from most of Austrostipa's currently accepted subgenera. Because of its taxonomic significance in Stipeae, we studied the lemma epidermal pattern (LEP) in 34 representatives of Austrostipa. Plastid DNA variation within Austrostipa was low and only few lineages were resolved. Nuclear ITS and Acc1 yielded comparable groupings of taxa and resolved subgenera Arbuscula, Petaurista, and Bambusina in a common clade and as monophyletic. In most of the Austrostipa species studied, the LEP was relatively uniform (typical maize-like), but six species had a modified cellular structure. The species representing subgenera Lobatae, Petaurista, Bambusina as well as A. muelleri from subg. Tuberculatae were well-separated from all the other species included in the analysis. We suggest recognizing nine subgenera in Austrostipa (with number of species): Arbuscula (4), Aulax (2), Austrostipa (36), Bambusina (2), Falcatae (10), Lobatae (5), Longiaristatae (2), Petaurista (2) and the new subgenus Paucispiculatae (1) encompassing A. muelleri. Two paralogous sequence copies of Acc1, forming two distinct clades, were found in polyploid Austrostipa and Anemanthele. We found analogous patterns for our samples of Stipa s.str. with their Acc1 clades strongly separated from those of Austrostipa and Anemanthele. This underlines a previous hypothesis of Tzvelev (1977) that most extant Stipeae are of hybrid origin. We also prepared an up-to-date survey and reviewed the chromosome number variation for our molecularly studied taxa and the whole tribe Stipeae. The chromosome base number patterns as well as dysploidy and whole-genome duplication events were interpreted in a phylogenetic framework. The rather coherent picture of chromosome number variation underlines the enormous phylogenetic and evolutionary significance of this frequently ignored character.

2.
PLoS One ; 13(2): e0192869, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29462207

RESUMEN

Karyotype characteristics can provide valuable information on genome evolution and speciation, in particular in taxa with varying basic chromosome numbers and ploidy levels. Due to its worldwide distribution, remarkable variability in morphological traits and the fact that ploidy change plays a key role in its evolution, the canary grass genus Phalaris (Poaceae) is an excellent study system to investigate the role of chromosomal changes in species diversification and expansion. Phalaris comprises diploid species with two basic chromosome numbers of x = 6 and 7 as well as polyploids based on x = 7. To identify distinct karyotype structures and to trace chromosome evolution within the genus, we apply fluorescence in situ hybridisation (FISH) of 5S and 45S rDNA probes in four diploid and four tetraploid Phalaris species of both basic numbers. The data agree with a dysploid reduction from x = 7 to x = 6 as the result of reciprocal translocations between three chromosomes of an ancestor with a diploid chromosome complement of 2n = 14. We recognize three different genomes in the genus: (1) the exclusively Mediterranean genome A based on x = 6, (2) the cosmopolitan genome B based on x = 7 and (3) a genome C based on x = 7 and with a distribution in the Mediterranean and the Middle East. Both auto- and allopolyploidy of genomes B and C are suggested for the formation of tetraploids. The chromosomal divergence observed in Phalaris can be explained by the occurrence of dysploidy, the emergence of three different genomes, and the chromosome rearrangements accompanied by karyotype change and polyploidization. Mapping the recognized karyotypes on the existing phylogenetic tree suggests that genomes A and C are restricted to sections Phalaris and Bulbophalaris, respectively, while genome B occurs across all taxa with x = 7.


Asunto(s)
Cromosomas de las Plantas/genética , Evolución Molecular , Cariotipo , Phalaris/genética , Ploidias , Genoma de Planta , Hibridación Fluorescente in Situ , Cariotipificación , Filogenia , ARN de Planta , ARN Ribosómico , ARN Ribosómico 5S
4.
AoB Plants ; 82016.
Artículo en Inglés | MEDLINE | ID: mdl-27255513

RESUMEN

Hybridization and polyploidization can radically impact genome organization from sequence level to chromosome structure. As a result, often in response to environmental change and species isolation, the development of novel traits can arise and will tend to result in the formation of homoploid or polyploid hybrid species. In this study we focus on evidence of hybridization and polyploidization by ascertaining the species parentage of the endemic alpine Helictotrichon parlatorei group. This group comprises five taxa; the diploids H. parlatorei, Helictotrichon setaceum subsp. setaceum and subsp. petzense, their putative hybrid Helictotrichon ×krischae and the hexaploid Helictotrichon sempervirens. For molecular analyses, cloned nuclear Topoisomerase VI genes of H. sempervirens and H. ×krischae were sequenced and compared with sequences of the diploids to estimate the evolutionary history in this group. In addition, detailed chromosome studies were carried out including fluorescence in situ hybridization (FISH) with 5S and 45S ribosomal and satellite DNA probes, and fluorochrome staining with chromomycin and DAPI. Two distinct types of Topoisomerase VI sequences were identified. One of them (SET) occurs in both subspecies of H. setaceum, the other (PAR) in H. parlatorei. Both types were found in H. ×krischae and H. sempervirens Karyotypes of H. parlatorei and H. setaceum could be distinguished by chromosomes with a clearly differentiated banding pattern of ribosomal DNAs. Both patterns occurred in the hybrid H. ×krischae Hexaploid H. sempervirens shares karyotype features with diploid H. parlatorei, but lacks the expected chromosome characteristics of H. setaceum, possibly an example of beginning diploidization after polyploidization. The geographic origin of the putative parental species and their hybrids and the possible biogeographical spread through the Alps are discussed.

5.
Genome ; 52(4): 361-80, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19370092

RESUMEN

Karyotype structures revealed by in situ hybridization with ribosomal and satellite DNAs and fluorochrome staining of AT- or GC-rich regions are reported for 23 diploid to tetraploid taxa of Aveneae genera Arrhenatherum, Avena, Helictotrichon, and Pseudarrhenatherum. Chromosomal features are compared with a molecular phylogeny generated on nuclear ribosomal (ITS, 5S) and chloroplast (matK) DNA sequences. Ancestral chromosomal character states are (1) two satellite chromosomes per set of x = 7, (2) 5S rDNA localized in nonsatellite chromosomes, (3) large chromosomes with (4) rather equal lengths of their respective chromosome arms, (5) sets with strong variance of chromosome lengths, (6) absence or small amounts of heterochromatin, and (7) absence or no detectable amplification of the satellite DNAs tested. Overall, most karyotype characteristics are species specific, but common patterns were found for the species of two large subgenera of Helictotrichon. Pseudarrhenatherum, although nested in the molecular phylogeny within Helictotrichon subgenus Helictotrichon, deviates strongly in karyotype characters such as Arrhenatherum as sister of Avena. The karyotype of Helictotrichon jahandiezii, sister to the clade of Helictotrichon subgenera Helictotrichon, Avena, and Arrhenatherum, strongly resembles that of Avena macrostachya. Karyotype features suggest that perennial A. macrostachya and H. jahandiezii are close to the C-genome species of annual Avena, whereas the Avena A genome resembles that of Arrhenatherum.


Asunto(s)
Avena/genética , Evolución Molecular , Filogenia , Avena/clasificación , ADN de Plantas/genética , ADN Ribosómico/genética , ADN Espaciador Ribosómico/genética , ADN Satélite/genética , Hibridación Fluorescente in Situ , Cariotipificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA