Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Biol ; 20(3): e3001590, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35358180

RESUMEN

Loss-of-function mutations in the depalmitoylating enzyme palmitoyl protein thioesterase 1 (PPT1) cause neuronal ceroid lipofuscinosis (NCL), a devastating neurodegenerative disease. The substrates of PPT1 are largely undescribed, posing a limitation on molecular dissection of disease mechanisms and therapeutic development. Here, we provide a resource identifying >100 novel PPT1 substrates. We utilized Acyl Resin-Assisted Capture (Acyl RAC) and mass spectrometry to identify proteins with increased in vivo palmitoylation in PPT1 knockout (KO) mouse brains. We then validated putative substrates through direct depalmitoylation with recombinant PPT1. This stringent screen elucidated diverse PPT1 substrates at the synapse, including channels and transporters, G-protein-associated molecules, endo/exocytic components, synaptic adhesion molecules, and mitochondrial proteins. Cysteine depalmitoylation sites in transmembrane PPT1 substrates frequently participate in disulfide bonds in the mature protein. We confirmed that depalmitoylation plays a role in disulfide bond formation in a tertiary screen analyzing posttranslational modifications (PTMs). Collectively, these data highlight the role of PPT1 in mediating synapse functions, implicate molecular pathways in the etiology of NCL and other neurodegenerative diseases, and advance our basic understanding of the purpose of depalmitoylation.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Animales , Disulfuros/metabolismo , Lipoilación , Ratones , Ratones Noqueados , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo , Sinapsis/metabolismo
2.
Anesthesiology ; 139(1): 49-62, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37027802

RESUMEN

BACKGROUND: Suppression of behavioral and physical responses defines the anesthetized state. This is accompanied, in humans, by characteristic changes in electroencephalogram patterns. However, these measures reveal little about the neuron or circuit-level physiologic action of anesthetics nor how information is trafficked between neurons. This study assessed whether entropy-based metrics can differentiate between the awake and anesthetized state in Caenorhabditis elegans and characterize emergence from anesthesia at the level of interneuronal communication. METHODS: Volumetric fluorescence imaging measured neuronal activity across a large portion of the C. elegans nervous system at cellular resolution during distinct states of isoflurane anesthesia, as well as during emergence from the anesthetized state. Using a generalized model of interneuronal communication, new entropy metrics were empirically derived that can distinguish the awake and anesthetized states. RESULTS: This study derived three new entropy-based metrics that distinguish between stable awake and anesthetized states (isoflurane, n = 10) while possessing plausible physiologic interpretations. State decoupling is elevated in the anesthetized state (0%: 48.8 ± 3.50%; 4%: 66.9 ± 6.08%; 8%: 65.1 ± 5.16%; 0% vs. 4%, P < 0.001; 0% vs. 8%, P < 0.001), while internal predictability (0%: 46.0 ± 2.94%; 4%: 27.7 ± 5.13%; 8%: 30.5 ± 4.56%; 0% vs. 4%, P < 0.001; 0% vs. 8%, P < 0.001), and system consistency (0%: 2.64 ± 1.27%; 4%: 0.97 ± 1.38%; 8%: 1.14 ± 0.47%; 0% vs. 4%, P = 0.006; 0% vs. 8%, P = 0.015) are suppressed. These new metrics also resolve to baseline during gradual emergence of C. elegans from moderate levels of anesthesia to the awake state (n = 8). The results of this study show that early emergence from isoflurane anesthesia in C. elegans is characterized by the rapid resolution of an elevation in high frequency activity (n = 8, P = 0.032). The entropy-based metrics mutual information and transfer entropy, however, did not differentiate well between the awake and anesthetized states. CONCLUSIONS: Novel empirically derived entropy metrics better distinguish the awake and anesthetized states compared to extant metrics and reveal meaningful differences in information transfer characteristics between states.


Asunto(s)
Anestesia , Anestésicos por Inhalación , Isoflurano , Animales , Humanos , Isoflurano/farmacología , Caenorhabditis elegans , Anestésicos por Inhalación/farmacología , Neuronas
3.
Anesthesiology ; 133(3): 569-582, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32452864

RESUMEN

BACKGROUND: Animal studies demonstrate that anesthetic exposure during neurodevelopment can lead to persistent behavioral impairment. The changes in neuronal function underlying these effects are incompletely understood. Caenorhabditis elegans is well suited for functional imaging of postanesthetic effects on neuronal activity. This study aimed to examine such effects within the neurocircuitry underlying C. elegans locomotion. METHODS: C. elegans were exposed to 8% isoflurane for 3 h during the neurodevelopmentally critical L1 larval stage. Locomotion was assessed during early and late adulthood. Spontaneous activity was measured within the locomotion command interneuron circuitry using confocal and light-sheet microscopy of the calcium-sensitive fluorophore GCaMP6s. RESULTS: C. elegans exposed to isoflurane demonstrated attenuation in spontaneous reversal behavior, persisting throughout the animal's lifespan (reversals/min: untreated early adulthood, 1.14 ± 0.42, vs. isoflurane-exposed early adulthood, 0.83 ± 0.55; untreated late adulthood, 1.75 ± 0.64, vs. isoflurane-exposed late adulthood, 1.14 ± 0.68; P = 0.001 and 0.006, respectively; n > 50 animal tracks/condition). Likewise, isoflurane exposure altered activity dynamics in the command interneuron AVA, which mediates crawling reversals. The rate at which AVA transitions between activity states was found to be increased. These anesthetic-induced effects were more pronounced with age (off-to-on activity state transition time (s): untreated early adulthood, 2.5 ± 1.2, vs. isoflurane-exposed early adulthood, 1.9 ± 1.3; untreated late adulthood, 4.6 ± 3.0, vs. isoflurane-exposed late adulthood, 3.0 ± 2.4; P = 0.028 and 0.008, respectively; n > 35 traces acquired from more than 15 animals/condition). Comparable effects were observed throughout the command interneuron circuitry, indicating that isoflurane exposure alters transition rates between behavioral crawling states of the system overall. These effects were modulated by loss-of-function mutations within the FoxO transcription factor daf-16 and by rapamycin-mediated mechanistic Target of Rapamycin (mTOR) inhibition. CONCLUSIONS: Altered locomotive behavior and activity dynamics indicate a persistent effect on interneuron dynamics and circuit function in C. elegansafter developmental exposure to isoflurane. These effects are modulated by a loss of daf-16 or mTOR activity, consistent with a pathologic activation of stress-response pathways.


Asunto(s)
Anestésicos por Inhalación/efectos adversos , Conducta Animal/efectos de los fármacos , Isoflurano/efectos adversos , Neuronas/efectos de los fármacos , Animales , Caenorhabditis elegans , Modelos Animales de Enfermedad , Locomoción/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
4.
Anesthesiology ; 133(1): 133-144, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32282426

RESUMEN

BACKGROUND: A comprehensive understanding of how anesthetics facilitate a reversible collapse of system-wide neuronal function requires measurement of neuronal activity with single-cell resolution. Multineuron recording was performed in Caenorhabditis elegans to measure neuronal activity at varying depths of anesthesia. The authors hypothesized that anesthesia is characterized by dyssynchrony between neurons resulting in a collapse of organized system states. METHODS: Using light-sheet microscopy and transgenic expression of the calcium-sensitive fluorophore GCaMP6s, a majority of neurons (n = 120) in the C. elegans head were simultaneously imaged in vivo and neuronal activity was measured. Neural activity and system-wide dynamics were compared in 10 animals, progressively dosed at 0%, 4%, and 8% isoflurane. System-wide neuronal activity was analyzed using principal component analysis. RESULTS: Unanesthetized animals display distinct global neuronal states that are reflected in a high degree of correlation (R = 0.196 ± 0.070) between neurons and low-frequency, large-amplitude neuronal dynamics. At 4% isoflurane, the average correlation between neurons is significantly diminished (R = 0.026 ± 0.010; P < 0.0001 vs. unanesthetized) and neuron dynamics shift toward higher frequencies but with smaller dynamic range. At 8% isoflurane, interneuronal correlations indicate that neuronal activity remains uncoordinated (R = 0.053 ± 0.029; P < 0.0001 vs. unanesthetized) with high-frequency dynamics that are even further restricted. Principal component analysis of unanesthetized neuronal activity reveals distinct structure corresponding to known behavioral states. At 4% and 8% isoflurane this structure is lost and replaced with randomized dynamics, as quantified by the percentage of total ensemble variance captured by the first three principal components. In unanesthetized worms, this captured variance is high (88.9 ± 5.4%), reflecting a highly organized system, falling significantly at 4% and 8% isoflurane (57.9 ± 11.2%, P < 0.0001 vs. unanesthetized, and 76.0 ± 7.9%, P < 0.001 vs. unanesthetized, respectively) and corresponding to increased randomization and collapse of system-wide organization. CONCLUSIONS: Anesthesia with isoflurane in C. elegans corresponds to high-frequency randomization of individual neuron activity, loss of coordination between neurons, and a collapse of system-wide functional organization.


Asunto(s)
Anestesia por Inhalación , Anestésicos por Inhalación/farmacología , Caenorhabditis elegans/efectos de los fármacos , Isoflurano/farmacología , Red Nerviosa/efectos de los fármacos , Neuronas/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Conducta Animal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Fenómenos Electrofisiológicos/efectos de los fármacos , Colorantes Fluorescentes , Interneuronas/efectos de los fármacos , Red Nerviosa/diagnóstico por imagen , Análisis de Componente Principal , Sevoflurano/farmacología
5.
Acta Neuropathol ; 131(4): 621-37, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26659577

RESUMEN

Neuronal ceroid lipofuscinoses (NCL) are a group of inherited neurodegenerative disorders with lysosomal pathology (CLN1-14). Recently, mutations in the DNAJC5/CLN4 gene, which encodes the presynaptic co-chaperone CSPα were shown to cause autosomal-dominant NCL. Although 14 NCL genes have been identified, it is unknown if they act in common disease pathways. Here we show that two disease-associated proteins, CSPα and the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (PPT1/CLN1) are biochemically linked. We find that in DNAJC5/CLN4 patient brains, PPT1 is massively increased and mis-localized. Surprisingly, the specific enzymatic activity of PPT1 is dramatically reduced. Notably, we demonstrate that CSPα is depalmitoylated by PPT1 and hence its substrate. To determine the consequences of PPT1 accumulation, we compared the palmitomes from control and DNAJC5/CLN4 patient brains by quantitative proteomics. We discovered global changes in protein palmitoylation, mainly involving lysosomal and synaptic proteins. Our findings establish a functional link between two forms of NCL and serve as a springboard for investigations of NCL disease pathways.


Asunto(s)
Encéfalo/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas de la Membrana/genética , Mutación/genética , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología , Tioléster Hidrolasas/metabolismo , Animales , Encéfalo/patología , Células Cultivadas , Corteza Cerebral/citología , Femenino , Proteínas del Choque Térmico HSP40/deficiencia , Humanos , Lipoilación/genética , Lipoilación/fisiología , Masculino , Proteínas de la Membrana/deficiencia , Ratones , Ratones Noqueados , Modelos Biológicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Mapas de Interacción de Proteínas , Proteómica , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/patología , Transfección
6.
Elife ; 112022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35703498

RESUMEN

In the aging brain, many of the alterations underlying cognitive and behavioral decline remain opaque. Caenorhabditis elegans offers a powerful model for aging research, with a simple, well-studied nervous system to further our understanding of the cellular modifications and functional alterations accompanying senescence. We perform multi-neuronal functional imaging across the aged C. elegans nervous system, measuring an age-associated breakdown in system-wide functional organization. At single-cell resolution, we detect shifts in activity dynamics toward higher frequencies. In addition, we measure a specific loss of inhibitory signaling that occurs early in the aging process and alters the systems' critical excitatory/inhibitory balance. These effects are recapitulated with mutation of the calcium channel subunit UNC-2/CaV2α. We find that manipulation of inhibitory GABA signaling can partially ameliorate or accelerate the effects of aging. The effects of aging are also partially mitigated by disruption of the insulin signaling pathway, known to increase longevity, or by a reduction of caspase activation. Data from mammals are consistent with our findings, suggesting a conserved shift in the balance of excitatory/inhibitory signaling with age that leads to breakdown in global neuronal dynamics and functional decline.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Envejecimiento/metabolismo , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidad , Mamíferos/metabolismo , Neuronas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA