Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Eur J Neurosci ; 52(1): 2614-2626, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31901174

RESUMEN

Maternal immune activation during pregnancy is associated with increased risk of development of schizophrenia in later life. There are sex differences in schizophrenia, particularly in terms of age of onset, course of illness and severity of symptoms. However, there is limited and inconsistent literature on sex differences in the effects of maternal immune activation on behaviour with relevance to schizophrenia. The aim of this study was therefore to investigate sex differences in the effects of maternal immune activation by treating Long Evans rats with poly(I:C) on gestational day 15. We compared adult male and female offspring on spatial working memory in the touchscreen trial-unique nonmatching-to-location task, pairwise discrimination and reversal learning, as well as on prepulse inhibition and psychotropic drug-induced locomotor hyperactivity. Male, but not female poly(I:C) offspring displayed a deficit in spatial working memory, particularly at the longer delay. Neither pairwise discrimination nor reversal learning showed an effect of poly(I:C), but female controls outperformed male controls in the reversal learning task. Significant reduction of prepulse inhibition and enhancement of acute methamphetamine-induced locomotor hyperactivity was found similarly in male and female poly(I:C) offspring. These results show that maternal immune activation induces a range of behavioural effects in the offspring, with sex specificity in the effects of maternal immune activation on some aspects of cognition, but not psychosis-like behaviour.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Trastornos Psicóticos , Animales , Conducta Animal , Cognición , Modelos Animales de Enfermedad , Femenino , Masculino , Poli I-C/toxicidad , Embarazo , Ratas , Ratas Long-Evans , Caracteres Sexuales
2.
Life Sci Alliance ; 7(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38171595

RESUMEN

The leukodystrophy vanishing white matter (VWM) is characterized by chronic and episodic acute neurological deterioration. Curative treatment is presently unavailable. Pathogenic variants in the genes encoding eukaryotic initiation factor 2B (eIF2B) cause VWM and deregulate the integrated stress response (ISR). Previous studies in VWM mouse models showed that several ISR-targeting compounds ameliorate clinical and neuropathological disease hallmarks. It is unclear which ISR components are suitable therapeutic targets. In this study, effects of 4-phenylbutyric acid, tauroursodeoxycholic acid, or pridopidine (PDPD), with ISR targets upstream or downstream of eIF2B, were assessed in VWM mice. In addition, it was found that the composite ataxia score represented motor decline of VWM mice more accurately than the previously used neuroscore. 4-phenylbutyric acid and tauroursodeoxycholic acid did not improve VWM disease hallmarks, whereas PDPD had subtle beneficial effects on motor skills. PDPD alone does not suffice as treatment in VWM mice but may be considered for combination therapy. Also, treatments aimed at ISR components upstream of eIF2B do not improve chronic neurological deterioration; effects on acute episodic decline remain to be investigated.


Asunto(s)
Factor 2B Eucariótico de Iniciación , Sustancia Blanca , Ratones , Animales , Factor 2B Eucariótico de Iniciación/genética , Factor 2B Eucariótico de Iniciación/metabolismo , Sustancia Blanca/patología , Destreza Motora , Modelos Animales de Enfermedad
3.
Front Neurosci ; 18: 1275744, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38352041

RESUMEN

Vanishing white matter (VWM) is a devastating autosomal recessive leukodystrophy, resulting in neurological deterioration and premature death, and without curative treatment. Pathogenic hypomorphic variants in subunits of the eukaryotic initiation factor 2B (eIF2B) cause VWM. eIF2B is required for regulating the integrated stress response (ISR), a physiological response to cellular stress. In patients' central nervous system, reduced eIF2B activity causes deregulation of the ISR. In VWM mouse models, the extent of ISR deregulation correlates with disease severity. One approach to restoring eIF2B activity is by inhibition of GSK3ß, a kinase that phosphorylates eIF2B and reduces its activity. Lithium, an inhibitor of GSK3ß, is thus expected to stimulate eIF2B activity and ameliorate VWM symptoms. The effects of lithium were tested in zebrafish and mouse VWM models. Lithium improved motor behavior in homozygous eif2b5 mutant zebrafish. In lithium-treated 2b4he2b5ho mutant mice, a paradoxical increase in some ISR transcripts was found. Furthermore, at the dosage tested, lithium induced significant polydipsia in both healthy controls and 2b4he2b5ho mutant mice and did not increase the expression of other markers of lithium efficacy. In conclusion, lithium is not a drug of choice for further development in VWM based on the limited or lack of efficacy and significant side-effect profile.

4.
Ann Clin Transl Neurol ; 9(8): 1147-1162, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35778832

RESUMEN

OBJECTIVE: Vanishing white matter (VWM) is a leukodystrophy, characterized by stress-sensitive neurological deterioration and premature death. It is currently without curative treatment. It is caused by bi-allelic pathogenic variants in the genes encoding eukaryotic initiation factor 2B (eIF2B). eIF2B is essential for the regulation of the integrated stress response (ISR), a physiological response to cellular stress. Preclinical studies on VWM mouse models revealed that deregulated ISR is key in the pathophysiology of VWM and an effective treatment target. Guanabenz, an α2-adrenergic agonist, attenuates the ISR and has beneficial effects on VWM neuropathology. The current study aimed at elucidating guanabenz's disease-modifying potential and mechanism of action in VWM mice. Sephin1, an ISR-modulating guanabenz analog without α2-adrenergic agonistic properties, was included to separate effects on the ISR from α2-adrenergic effects. METHODS: Wild-type and VWM mice were subjected to placebo, guanabenz or sephin1 treatments. Effects on clinical signs, neuropathology, and ISR deregulation were determined. Guanabenz's and sephin1's ISR-modifying effects were tested in cultured cells that expressed or lacked the α2-adrenergic receptor. RESULTS: Guanabenz improved clinical signs, neuropathological hallmarks, and ISR regulation in VWM mice, but sephin1 did not. Guanabenz's effects on the ISR in VWM mice were not replicated in cell cultures and the contribution of α2-adrenergic effects on the deregulated ISR could therefore not be assessed. INTERPRETATION: Guanabenz proved itself as a viable treatment option for VWM. The exact mechanism through which guanabenz exerts its ameliorating impact on VWM requires further studies. Sephin1 is not simply a guanabenz replacement without α2-adrenergic effects.


Asunto(s)
Guanabenzo , Sustancia Blanca , Adrenérgicos , Animales , Factor 2B Eucariótico de Iniciación/genética , Guanabenzo/análogos & derivados , Guanabenzo/farmacología , Ratones , Sustancia Blanca/patología
5.
Front Mol Neurosci ; 12: 31, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30837840

RESUMEN

Convulsive seizures promote adult hippocampal neurogenesis (AHN) through a transient activation of neural stem/progenitor cells (NSPCs) in the subgranular zone (SGZ) of the dentate gyrus (DG). However, in a significant population of epilepsy patients, non-convulsive seizures (ncSZ) are observed. The response of NSPCs to non-convulsive seizure induction has not been characterized before. We here studied first the short-term effects of controlled seizure induction on NSPCs fate and identity. We induced seizures of controlled intensity by intrahippocampally injecting increasing doses of the chemoconvulsant kainic acid (KA) and analyzed their effect on subdural EEG recordings, hippocampal structure, NSPC proliferation and the number and location of immature neurons shortly after seizure onset. After establishing a KA dose that elicits ncSZ, we then analyzed the effects of ncSZ on NSPC proliferation and NSC identity in the hippocampus. ncSZ specifically triggered neuroblast proliferation, but did not induce proliferation of NSPCs in the SGZ, 3 days post seizure onset. However, ncSZ induced significant changes in NSPC composition in the hippocampus, including the generation of reactive NSCs. Interestingly, intrahippocampal injection of a combination of two anti microRNA oligonucleotides targeting microRNA-124 and -137 normalized neuroblast proliferation and prevented NSC loss in the DG upon ncSZ. Our results show for the first time that ncSZ induce significant changes in neuroblast proliferation and NSC composition. Simultaneous antagonism of both microRNA-124 and -137 rescued seizure-induced alterations in NSPC, supporting their coordinated action in the regulation of NSC fate and proliferation and their potential for future seizure therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA