Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(51): e2303713120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38091291

RESUMEN

The mitochondrial permeability transition pore (mPTP) is a channel in the inner mitochondrial membrane whose sustained opening in response to elevated mitochondrial matrix Ca2+ concentrations triggers necrotic cell death. The molecular identity of mPTP is unknown. One proposed candidate is the mitochondrial ATP synthase, whose canonical function is to generate most ATP in multicellular organisms. Here, we present mitochondrial, cellular, and in vivo evidence that, rather than serving as mPTP, the mitochondrial ATP synthase inhibits this pore. Our studies confirm previous work showing persistence of mPTP in HAP1 cell lines lacking an assembled mitochondrial ATP synthase. Unexpectedly, however, we observe that Ca2+-induced pore opening is markedly sensitized by loss of the mitochondrial ATP synthase. Further, mPTP opening in cells lacking the mitochondrial ATP synthase is desensitized by pharmacological inhibition and genetic depletion of the mitochondrial cis-trans prolyl isomerase cyclophilin D as in wild-type cells, indicating that cyclophilin D can modulate mPTP through substrates other than subunits in the assembled mitochondrial ATP synthase. Mitoplast patch clamping studies showed that mPTP channel conductance was unaffected by loss of the mitochondrial ATP synthase but still blocked by cyclophilin D inhibition. Cardiac mitochondria from mice whose heart muscle cells we engineered deficient in the mitochondrial ATP synthase also demonstrate sensitization of Ca2+-induced mPTP opening and desensitization by cyclophilin D inhibition. Further, these mice exhibit strikingly larger myocardial infarctions when challenged with ischemia/reperfusion in vivo. We conclude that the mitochondrial ATP synthase does not function as mPTP and instead negatively regulates this pore.


Asunto(s)
Poro de Transición de la Permeabilidad Mitocondrial , ATPasas de Translocación de Protón Mitocondriales , Ratones , Animales , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Ciclofilinas/genética , Ciclofilinas/metabolismo , Peptidil-Prolil Isomerasa F , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Calcio/metabolismo
2.
Nat Commun ; 13(1): 3775, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35798717

RESUMEN

Mitofusins reside on the outer mitochondrial membrane and regulate mitochondrial fusion, a physiological process that impacts diverse cellular processes. Mitofusins are activated by conformational changes and subsequently oligomerize to enable mitochondrial fusion. Here, we identify small molecules that directly increase or inhibit mitofusins activity by modulating mitofusin conformations and oligomerization. We use these small molecules to better understand the role of mitofusins activity in mitochondrial fusion, function, and signaling. We find that mitofusin activation increases, whereas mitofusin inhibition decreases mitochondrial fusion and functionality. Remarkably, mitofusin inhibition also induces minority mitochondrial outer membrane permeabilization followed by sub-lethal caspase-3/7 activation, which in turn induces DNA damage and upregulates DNA damage response genes. In this context, apoptotic death induced by a second mitochondria-derived activator of caspases (SMAC) mimetic is potentiated by mitofusin inhibition. These data provide mechanistic insights into the function and regulation of mitofusins as well as small molecules to pharmacologically target mitofusins.


Asunto(s)
GTP Fosfohidrolasas , Mitocondrias , GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA