Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Physiol ; 601(15): 3351-3376, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36511176

RESUMEN

Although electrophysiologists have been recording intracellular neural activity routinely ever since the ground-breaking work of Hodgkin and Huxley, and extracellular multichannel electrodes have also been used frequently and extensively, a practical experimental method to track changes in membrane potential along a complete single neuron is still lacking. Instead of obtaining multiple intracellular measurements on the same neuron, we propose an alternative method by combining single-channel somatic patch-clamp and multichannel extracellular potential recordings. In this work, we show that it is possible to reconstruct the complete spatiotemporal distribution of the membrane potential of a single neuron with the spatial resolution of an extracellular probe during action potential generation. Moreover, the reconstruction of the membrane potential allows us to distinguish between the two major but previously hidden components of the current source density (CSD) distribution: the resistive and the capacitive currents. This distinction provides a clue to the clear interpretation of the CSD analysis, because the resistive component corresponds to transmembrane ionic currents (all the synaptic, voltage-sensitive and passive currents), whereas capacitive currents are considered to be the main contributors of counter-currents. We validate our model-based reconstruction approach on simulations and demonstrate its application to experimental data obtained in vitro via paired extracellular and intracellular recordings from a single pyramidal cell of the rat hippocampus. In perspective, the estimation of the spatial distribution of resistive membrane currents makes it possible to distiguish between active and passive sinks and sources of the CSD map and the localization of the synaptic input currents, which make the neuron fire. KEY POINTS: A new computational method is introduced to calculate the unbiased current source density distribution on a single neuron with known morphology. The relationship between extracellular and intracellular electric potential is determined via mathematical formalism, and a new reconstruction method is applied to reveal the full spatiotemporal distribution of the membrane potential and the resistive and capacitive current components. The new reconstruction method was validated on simulations. Simultaneous and colocalized whole-cell patch-clamp and multichannel silicon probe recordings were performed from the same pyramidal neuron in the rat hippocampal CA1 region, in vitro. The method was applied in experimental measurements and returned precise and distinctive characteristics of various intracellular phenomena, such as action potential generation, signal back-propagation and the initial dendritic depolarization preceding the somatic action potential.


Asunto(s)
Neuronas , Células Piramidales , Ratas , Animales , Potenciales de la Membrana/fisiología , Neuronas/fisiología , Células Piramidales/fisiología , Potenciales de Acción , Hipocampo/fisiología
2.
Org Biomol Chem ; 21(44): 8829-8836, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37917021

RESUMEN

An asymmetric cyanine-type fluorescent dye was designed and synthesized via a versatile, multi-step process, aiming to conjugate with an Her2+ receptor specific antibody by an azide-alkyne click reaction. The aromaticity and the excitation and relaxation energetics of the fluorophore were characterized by computational methods. The synthesized dye exhibited excellent fluorescence properties for confocal microscopy, offering efficient applicability in in vitro imaging due to its merits such as a high molar absorption coefficient (36 816 M-1 cm-1), excellent brightness, optimal wavelength (627 nm), larger Stokes shift (26 nm) and appropriate photostability compared to cyanines. The conjugated cyanine-trastuzumab was constructed via an effective, metal-free, strain-promoted azide-alkyne click reaction leading to a regulated number of dyes being conjugated. This novel cyanine-labelled antibody was successfully applied for in vitro confocal imaging and flow cytometry of Her2+ tumor cells.


Asunto(s)
Azidas , Colorantes Fluorescentes , Carbocianinas , Anticuerpos , Alquinos , Microscopía Confocal
3.
Proc Natl Acad Sci U S A ; 116(47): 23772-23782, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31685634

RESUMEN

The alpha rhythm is the longest-studied brain oscillation and has been theorized to play a key role in cognition. Still, its physiology is poorly understood. In this study, we used microelectrodes and macroelectrodes in surgical epilepsy patients to measure the intracortical and thalamic generators of the alpha rhythm during quiet wakefulness. We first found that alpha in both visual and somatosensory cortex propagates from higher-order to lower-order areas. In posterior cortex, alpha propagates from higher-order anterosuperior areas toward the occipital pole, whereas alpha in somatosensory cortex propagates from associative regions toward primary cortex. Several analyses suggest that this cortical alpha leads pulvinar alpha, complicating prevailing theories of a thalamic pacemaker. Finally, alpha is dominated by currents and firing in supragranular cortical layers. Together, these results suggest that the alpha rhythm likely reflects short-range supragranular feedback, which propagates from higher- to lower-order cortex and cortex to thalamus. These physiological insights suggest how alpha could mediate feedback throughout the thalamocortical system.


Asunto(s)
Ritmo alfa , Corteza Cerebral/fisiología , Electrodos , Electroencefalografía , Humanos , Tálamo/fisiología
4.
Neuroimage ; 226: 117587, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33249216

RESUMEN

Sleep spindles are functionally important NREM sleep EEG oscillations which are generated in thalamocortical, corticothalamic and possibly cortico-cortical circuits. Previous hypotheses suggested that slow and fast spindles or spindles with various spatial extent may be generated in different circuits with various cortical laminar innervation patterns. We used NREM sleep EEG data recorded from four human epileptic patients undergoing presurgical electrophysiological monitoring with subdural electrocorticographic grids (ECoG) and implanted laminar microelectrodes penetrating the cortex (IME). The position of IMEs within cortical layers was confirmed using postsurgical histological reconstructions. Many spindles detected on the IME occurred only in one layer and were absent from the ECoG, but with increasing amplitude simultaneous detection in other layers and on the ECoG became more likely. ECoG spindles were in contrast usually accompanied by IME spindles. Neither IME nor ECoG spindle cortical profiles were strongly associated with sleep spindle frequency or globality. Multiple-unit and single-unit activity during spindles, however, was heterogeneous across spindle types, but also across layers and patients. Our results indicate that extremely local spindles may occur in any cortical layer, but co-occurrence at other locations becomes likelier with increasing amplitude and the relatively large spindles detected on ECoG channels have a stereotypical laminar profile. We found no compelling evidence that different spindle types are associated with different laminar profiles, suggesting that they are generated in cortical and thalamic circuits with similar cortical innervation patterns. Local neuronal activity is a stronger candidate mechanism for driving functional differences between spindles subtypes.


Asunto(s)
Epilepsia Refractaria , Corteza Prefrontal/fisiología , Sueño/fisiología , Adolescente , Adulto , Mapeo Encefálico , Corteza Cerebral/fisiología , Niño , Electrocorticografía , Electrodos Implantados , Electroencefalografía , Femenino , Lóbulo Frontal/fisiología , Humanos , Masculino , Vías Nerviosas , Adulto Joven
5.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35008628

RESUMEN

Inhibitory neurons innervating the perisomatic region of cortical excitatory principal cells are known to control the emergence of several physiological and pathological synchronous events, including epileptic interictal spikes. In humans, little is known about their role in synchrony generation, although their changes in epilepsy have been thoroughly investigated. This paper demonstraits how parvalbumin (PV)- and type 1 cannabinoid receptor (CB1R)-positive perisomatic interneurons innervate pyramidal cell bodies, and their role in synchronous population events spontaneously emerging in the human epileptic and non-epileptic neocortex, in vitro. Quantitative electron microscopy showed that the overall, PV+ and CB1R+ somatic inhibitory inputs remained unchanged in focal cortical epilepsy. On the contrary, the size of PV-stained synapses increased, and their number decreased in epileptic samples, in synchrony generating regions. Pharmacology demonstrated-in conjunction with the electron microscopy-that although both perisomatic cell types participate, PV+ cells have stronger influence on the generation of population activity in epileptic samples. The somatic inhibitory input of neocortical pyramidal cells remained almost intact in epilepsy, but the larger and consequently more efficient somatic synapses might account for a higher synchrony in this neuron population. This, together with epileptic hyperexcitability, might make a cortical region predisposed to generate or participate in hypersynchronous events.


Asunto(s)
Sincronización Cortical/fisiología , Epilepsia/fisiopatología , Neocórtex/fisiopatología , Inhibición Neural/fisiología , Potenciales de Acción , Adulto , Anciano , Anciano de 80 o más Años , Epilepsia/patología , Femenino , Humanos , Interneuronas/metabolismo , Interneuronas/ultraestructura , Masculino , Persona de Mediana Edad , Neocórtex/patología , Neocórtex/ultraestructura , Parvalbúminas/metabolismo , Receptores de Cannabinoides/metabolismo , Sinapsis/patología , Sinapsis/ultraestructura
6.
J Neurosci ; 38(12): 3013-3025, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29449429

RESUMEN

Sleep spindles are a cardinal feature in human NREM sleep and may be important for memory consolidation. We studied the intracortical organization of spindles in men and women by recording spontaneous sleep spindles from different cortical layers using linear microelectrode arrays. Two patterns of spindle generation were identified using visual inspection, and confirmed with factor analysis. Spindles (10-16 Hz) were largest and most common in upper and middle channels, with limited involvement of deep channels. Many spindles were observed in only upper or only middle channels, but approximately half occurred in both. In spindles involving both middle and upper channels, the spindle envelope onset in middle channels led upper by ∼25-50 ms on average. The phase relationship between spindle waves in upper and middle channels varied dynamically within spindle epochs, and across individuals. Current source density analysis demonstrated that upper and middle channel spindles were both generated by an excitatory supragranular current sink while an additional deep source was present for middle channel spindles only. Only middle channel spindles were accompanied by deep low (25-50 Hz) and high (70-170 Hz) gamma activity. These results suggest that upper channel spindles are generated by supragranular pyramids, and middle channel by infragranular. Possibly, middle channel spindles are generated by core thalamocortical afferents, and upper channel by matrix. The concurrence of these patterns could reflect engagement of cortical circuits in the integration of more focal (core) and distributed (matrix) aspects of memory. These results demonstrate that at least two distinct intracortical systems generate human sleep spindles.SIGNIFICANCE STATEMENT Bursts of ∼14 Hz oscillations, lasting ∼1 s, have been recognized for over 80 years as cardinal features of mammalian sleep. Recent findings suggest that they play a key role in organizing cortical activity during memory consolidation. We used linear microelectrode arrays to study their intracortical organization in humans. We found that spindles could be divided into two types. One mainly engages upper layers of the cortex, which are considered to be specialized for associative activity. The other engages both upper and middle layers, including those devoted to sensory input. The interaction of these two spindle types may help organize the interaction of sensory and associative aspects of memory consolidation.


Asunto(s)
Corteza Cerebral/fisiología , Consolidación de la Memoria/fisiología , Sueño/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Adulto Joven
7.
J Physiol ; 597(23): 5639-5670, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31523807

RESUMEN

KEY POINTS: •Initiation of pathological synchronous events such as epileptic spikes and seizures is linked to the hyperexcitability of the neuronal network in both humans and animals. •In the present study, we show that epileptiform interictal-like spikes and seizures emerged in human neocortical slices by blocking GABAA receptors, following the disappearance of the spontaneously occurring synchronous population activity. •Large variability of temporally and spatially simple and complex spikes was generated by tissue from epileptic patients, whereas only simple events appeared in samples from non-epileptic patients. •Physiological population activity was associated with a moderate level of principal cell and interneuron firing, with a slight dominance of excitatory neuronal activity, whereas epileptiform events were mainly initiated by the synchronous and intense discharge of inhibitory cells. •These results help us to understand the role of excitatory and inhibitory neurons in synchrony-generating mechanisms, in both epileptic and non-epileptic conditions. ABSTRACT: Understanding the role of different neuron types in synchrony generation is crucial for developing new therapies aiming to prevent hypersynchronous events such as epileptic seizures. Paroxysmal activity was linked to hyperexcitability and to bursting behaviour of pyramidal cells in animals. Human data suggested a leading role of either principal cells or interneurons, depending on the seizure morphology. In the present study, we aimed to uncover the role of excitatory and inhibitory processes in synchrony generation by analysing the activity of clustered single neurons during physiological and epileptiform synchronies in human neocortical slices. Spontaneous population activity was detected with a 24-channel laminar microelectrode in tissue derived from patients with or without preoperative clinical manifestations of epilepsy. This population activity disappeared by blocking GABAA receptors, and several variations of spatially and temporally simple or complex interictal-like spikes emerged in epileptic tissue, whereas peritumoural slices generated only simple spikes. Around one-half of the clustered neurons participated with an elevated firing rate in physiological synchronies with a slight dominance of excitatory cells. By contrast, more than 90% of the neurons contributed to interictal-like spikes and seizures, and an intense and synchronous discharge of inhibitory neurons was associated with the start of these events. Intrinsically bursting principal cells fired later than other neurons. Our data suggest that a balanced excitation and inhibition characterized physiological synchronies, whereas disinhibition-induced epileptiform events were initiated mainly by non-synaptically synchronized inhibitory neurons. Our results further highlight the differences between humans and animal models, and between in vivo and (pharmacologically manipulated) in vitro conditions.


Asunto(s)
Epilepsia/fisiopatología , Neocórtex/fisiología , Adulto , Anciano , Bicuculina/farmacología , Femenino , Antagonistas de Receptores de GABA-A/farmacología , Humanos , Masculino , Persona de Mediana Edad , Neocórtex/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Receptores de GABA-A/fisiología , Adulto Joven
9.
J Physiol ; 596(2): 317-342, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29178354

RESUMEN

KEY POINTS: Hyperexcitability and hypersynchrony of neuronal networks are thought to be linked to the generation of epileptic activity in both humans and animal models. Here we show that human epileptic postoperative neocortical tissue is able to generate two different types of synchronies in vitro. Epileptiform bursts occurred only in slices derived from epileptic patients and were hypersynchronous events characterized by high levels of excitability. Spontaneous population activity emerged in both epileptic and non-epileptic tissue, with a significantly lower degree of excitability and synchrony, and could not be linked to epilepsy. These results help us to understand better the role of excitatory and inhibitory neuronal circuits in the generation of population events, and to define the subtle border between physiological and pathological synchronies. ABSTRACT: Interictal activity is a hallmark of epilepsy diagnostics and is linked to neuronal hypersynchrony. Little is known about perturbations in human epileptic neocortical microcircuits, and their role in generating pathological synchronies. To explore hyperexcitability of the human epileptic network, and its contribution to convulsive activity, we investigated an in vitro model of synchronous burst activity spontaneously occurring in postoperative tissue slices derived from patients with or without preoperative clinical and electrographic manifestations of epileptic activity. Human neocortical slices generated two types of synchronies. Interictal-like discharges (classified as epileptiform events) emerged only in epileptic samples, and were hypersynchronous bursts characterized by considerably elevated levels of excitation. Synchronous population activity was initiated in both epileptic and non-epileptic tissue, with a significantly lower degree of excitability and synchrony, and could not be linked to epilepsy. However, in pharmacoresistant epileptic tissue, a higher percentage of slices exhibited population activity, with higher local field potential gradient amplitudes. More intracellularly recorded neurons received depolarizing synaptic potentials, discharging more reliably during the events. Light and electron microscopic examinations showed slightly lower neuron densities and higher densities of excitatory synapses in the human epileptic neocortex. Our data suggest that human neocortical microcircuits retain their functionality and plasticity in vitro, and can generate two significantly different synchronies. We propose that population bursts might not be pathological events while interictal-like discharges may reflect the epileptogenicity of the human cortex. Our results show that hyperexcitability characterizes the human epileptic neocortical network, and that it is closely related to the emergence of synchronies.


Asunto(s)
Potenciales de Acción , Excitabilidad Cortical , Epilepsia/fisiopatología , Neocórtex/fisiopatología , Red Nerviosa/fisiopatología , Sinapsis/fisiología , Adolescente , Adulto , Anciano , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
10.
J Neurophysiol ; 116(5): 2312-2330, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27535370

RESUMEN

Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single- and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Cerebral/fisiología , Electrodos Implantados , Red Nerviosa/fisiología , Silicio , Tálamo/fisiología , Estimulación Acústica/métodos , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos , Optogenética/métodos , Ratas , Ratas Wistar
11.
Eur J Neurosci ; 44(3): 1935-51, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27177594

RESUMEN

Rhythmic slow waves characterize brain electrical activity during natural deep sleep and under anesthesia, reflecting the synchronous membrane potential fluctuations of neurons in the thalamocortical network. Strong evidence indicates that the neocortex plays an important role in the generation of slow wave activity (SWA), however, contributions of individual cortical layers to the SWA generation are still unclear. The anatomically correct laminar profiles of SWA were revealed under ketamine/xylazine anesthesia, with combined local field potential recordings, multiple-unit activity (MUA), current source density (CSD) and time-frequency analyses precisely co-registered with histology. The up-state related negative field potential wave showed the largest amplitude in layer IV, the CSD was largest in layers I and III, whereas MUA was maximal in layer V, suggesting spatially dissociated firing and synaptic/transmembrane processes in the rat somatosensory cortex. Up-state related firing could start in virtually any layers (III-VI) of the cortex, but were most frequently initiated in layer V. However, in a subset of experiments, layer IV was considerably active in initiating up-state related MUA even in the absence of somatosensory stimulation. Somatosensory stimulation further strengthened up-state initiation in layer IV. Our results confirm that cortical layer V firing may have a major contribution to the up-state generation of ketamine/xylazine-induced SWA, however, thalamic influence through the thalamorecipient layer IV can also play an initiating role, even in the absence of sensory stimulation.


Asunto(s)
Ondas Encefálicas , Corteza Somatosensorial/fisiología , Analgésicos/farmacología , Animales , Potenciales Evocados Somatosensoriales , Femenino , Ketamina/farmacología , Masculino , Ratas , Ratas Wistar , Corteza Somatosensorial/efectos de los fármacos , Xilazina/farmacología
12.
Hippocampus ; 25(2): 169-86, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25209976

RESUMEN

Hippocampal sharp wave-ripples (SPW-Rs) occur during slow wave sleep and behavioral immobility and are thought to play an important role in memory formation. We investigated the cellular and network properties of SPW-Rs with simultaneous laminar multielectrode and intracellular recordings in a rat hippocampal slice model, using physiological bathing medium. Spontaneous SPW-Rs were generated in the dentate gyrus (DG), CA3, and CA1 regions. These events were characterized by a local field potential gradient (LFPg) transient, increased fast oscillatory activity and increased multiple unit activity (MUA). Two types of SPW-Rs were distinguished in the CA3 region based on their different LFPg and current source density (CSD) pattern. Type 1 (T1) displayed negative LFPg transient in the pyramidal cell layer, and the associated CSD sink was confined to the proximal dendrites. Type 2 (T2) SPW-Rs were characterized by positive LFPg transient in the cell layer, and showed CSD sinks involving both the apical and basal dendrites. In both types, consistent with the somatic CSD source, only a small subset of CA3 pyramidal cells fired, most pyramidal cells were hyperpolarized, while most interneurons increased firing rate before the LFPg peak. Different neuronal populations, with different proportions of pyramidal cells and distinct subsets of interneurons were activated during T1 and T2 SPW-Rs. Activation of specific inhibitory cell subsets-with the possible leading role of perisomatic interneurons-seems to be crucial to synchronize distinct ensembles of CA3 pyramidal cells finally resulting in the expression of different SPW-R activities. This suggests that the hippocampus can generate dynamic changes in its activity stemming from the same excitatory and inhibitory circuits, and so, might provide the cellular and network basis for an input-specific and activity-dependent information transmission.


Asunto(s)
Región CA3 Hipocampal/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/efectos de los fármacos , Dendritas/efectos de los fármacos , Dendritas/fisiología , Giro Dentado/efectos de los fármacos , Giro Dentado/fisiología , Estimulación Eléctrica , Femenino , Ácido Glutámico/metabolismo , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Masculino , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Periodicidad , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Ratas Wistar , Técnicas de Cultivo de Tejidos , Ácido gamma-Aminobutírico/metabolismo
13.
Sci Rep ; 14(1): 13784, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877093

RESUMEN

Cortico-cortical evoked potentials (CCEPs) elicited by single-pulse electric stimulation (SPES) are widely used to assess effective connectivity between cortical areas and are also implemented in the presurgical evaluation of epileptic patients. Nevertheless, the cortical generators underlying the various components of CCEPs in humans have not yet been elucidated. Our aim was to describe the laminar pattern arising under SPES evoked CCEP components (P1, N1, P2, N2, P3) and to evaluate the similarities between N2 and the downstate of sleep slow waves. We used intra-cortical laminar microelectrodes (LMEs) to record CCEPs evoked by 10 mA bipolar 0.5 Hz electric pulses in seven patients with medically intractable epilepsy implanted with subdural grids. Based on the laminar profile of CCEPs, the latency of components is not layer-dependent, however their rate of appearance varies across cortical depth and stimulation distance, while the seizure onset zone does not seem to affect the emergence of components. Early neural excitation primarily engages middle and deep layers, propagating to the superficial layers, followed by mainly superficial inhibition, concluding in a sleep slow wave-like inhibition and excitation sequence.


Asunto(s)
Estimulación Eléctrica , Potenciales Evocados , Humanos , Masculino , Femenino , Adulto , Estimulación Eléctrica/métodos , Corteza Cerebral/fisiología , Corteza Cerebral/fisiopatología , Epilepsia Refractaria/terapia , Epilepsia Refractaria/fisiopatología , Electroencefalografía , Adulto Joven , Persona de Mediana Edad , Epilepsia/fisiopatología , Epilepsia/terapia
14.
Front Synaptic Neurosci ; 15: 1233569, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37635750

RESUMEN

Epilepsy is a prevalent neurological condition, with underlying neuronal mechanisms involving hyperexcitability and hypersynchrony. Imbalance between excitatory and inhibitory circuits, as well as histological reorganization are relatively well-documented in animal models or even in the human hippocampus, but less is known about human neocortical epileptic activity. Our knowledge about changes in the excitatory signaling is especially scarce, compared to that about the inhibitory cell population. This study investigated the firing properties of single neurons in the human neocortex in vitro, during pharmacological blockade of glutamate receptors, and additionally evaluated anatomical changes in the excitatory circuit in tissue samples from epileptic and non-epileptic patients. Both epileptic and non-epileptic tissues exhibited spontaneous population activity (SPA), NMDA receptor antagonization reduced SPA recurrence only in epileptic tissue, whereas further blockade of AMPA/kainate receptors reversibly abolished SPA emergence regardless of epilepsy. Firing rates did not significantly change in excitatory principal cells and inhibitory interneurons during pharmacological experiments. Granular layer (L4) neurons showed an increased firing rate in epileptic compared to non-epileptic tissue. The burstiness of neurons remained unchanged, except for that of inhibitory cells in epileptic recordings, which decreased during blockade of glutamate receptors. Crosscorrelograms computed from single neuron discharge revealed both mono- and polysynaptic connections, particularly involving intrinsically bursting principal cells. Histological investigations found similar densities of SMI-32-immunopositive long-range projecting pyramidal cells in both groups, and shorter excitatory synaptic active zones with a higher proportion of perforated synapses in the epileptic group. These findings provide insights into epileptic modifications from the perspective of the excitatory system and highlight discrete alterations in firing patterns and synaptic structure. Our data suggest that NMDA-dependent glutamatergic signaling, as well as the excitatory synaptic machinery are perturbed in epilepsy, which might contribute to epileptic activity in the human neocortex.

15.
ACS Omega ; 8(25): 22836-22843, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37396252

RESUMEN

A novel family of julolidine-containing fluorescent rhodols equipped with a wide variety of substituents was synthesized in a versatile two-step process. The prepared compounds were fully characterized and exhibited excellent fluorescence properties for microscopy imaging. The best candidate was conjugated to the therapeutic antibody trastuzumab through a copper-free strain-promoted azide-alkyne click reaction. The rhodol-labeled antibody was successfully applied for in vitro confocal and two-photon microscopy imaging of Her2+ cells.

16.
J Neurosci ; 31(24): 8770-9, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21677161

RESUMEN

Cortical electrical activity during nonrapid eye movement (non-REM) sleep is dominated by slow-wave activity (SWA). At larger spatial scales (∼2-30 cm), investigated by scalp EEG recordings, SWA has been shown to propagate globally over wide cortical regions as traveling waves, which has been proposed to serve as a temporal framework for neural plasticity. However, whether SWA dynamics at finer spatial scales also reflects the orderly propagation has not previously been investigated in humans. To reveal the local, finer spatial scale (∼1-6 cm) patterns of SWA propagation during non-REM sleep, electrocorticographic (ECoG) recordings were conducted from subdurally implanted electrode grids and a nonlinear correlation technique [mutual information (MI)] was implemented. MI analysis revealed spatial maps of correlations between cortical areas demonstrating SWA propagation directions, speed, and association strength. Highest correlations, indicating significant coupling, were detected during the initial positive-going deflection of slow waves. SWA propagated predominantly between adjacent cortical areas, albeit spatial noncontinuities were also frequently observed. MI analysis further uncovered significant convergence and divergence patterns. Areas receiving the most convergent activity were similar to those with high divergence rate, while reciprocal and circular propagation of SWA was also frequent. We hypothesize that SWA is characterized by distinct attributes depending on the spatial scale observed. At larger spatial scales, the orderly SWA propagation dominates; at the finer scale of the ECoG recordings, non-REM sleep is characterized by complex SWA propagation patterns.


Asunto(s)
Mapeo Encefálico , Ondas Encefálicas/fisiología , Corteza Cerebral/fisiopatología , Epilepsia Parcial Compleja/patología , Sueño/fisiología , Adolescente , Adulto , Electroencefalografía/métodos , Epilepsia Parcial Compleja/fisiopatología , Femenino , Humanos , Masculino , Red Nerviosa/fisiología , Dinámicas no Lineales , Estadísticas no Paramétricas
18.
Sci Rep ; 12(1): 6280, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428851

RESUMEN

Knowledge about the activity of single neurons is essential in understanding the mechanisms of synchrony generation, and particularly interesting if related to pathological conditions. The generation of interictal spikes-the hypersynchronous events between seizures-is linked to hyperexcitability and to bursting behaviour of neurons in animal models. To explore its cellular mechanisms in humans we investigated the activity of clustered single neurons in a human in vitro model generating both physiological and epileptiform synchronous events. We show that non-epileptic synchronous events resulted from the finely balanced firing of excitatory and inhibitory cells, which was shifted towards an enhanced excitability in epileptic tissue. In contrast, interictal-like spikes were characterised by an asymmetric overall neuronal discharge initiated by excitatory neurons with the presumptive leading role of bursting pyramidal cells, and possibly terminated by inhibitory interneurons. We found that the overall burstiness of human neocortical neurons is not necessarily related to epilepsy, but the bursting behaviour of excitatory cells comprising both intrinsic and synaptically driven bursting is clearly linked to the generation of epileptiform synchrony.


Asunto(s)
Epilepsia , Potenciales de Acción/fisiología , Animales , Epilepsia/patología , Humanos , Interneuronas/patología , Neuronas/fisiología , Células Piramidales/fisiología
19.
Eur J Med Chem ; 231: 114163, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35131537

RESUMEN

Intrinsically disordered proteins (IDPs) play important roles in disease pathologies; however, their lack of defined stable 3D structures make traditional drug design strategies typically less effective against these targets. Based on promising results of targeted covalent inhibitors (TCIs) on challenging targets, we have developed a covalent design strategy targeting IDPs. As a model system we chose tau, an endogenous IDP of the central nervous system that is associated with severe neurodegenerative diseases via its aggregation. First, we mapped the tractability of available cysteines in tau and prioritized suitable warheads. Next, we introduced the selected vinylsulfone warhead to the non-covalent scaffolds of potential tau aggregation inhibitors. The designed covalent tau binders were synthesized and tested in aggregation models, and inhibited tau aggregation effectively. Our results revealed the usefulness of the covalent design strategy against therapeutically relevant IDP targets and provided promising candidates for the treatment of tauopathies.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Enfermedades Neurodegenerativas , Tauopatías , Cisteína , Diseño de Fármacos , Humanos , Proteínas Intrínsecamente Desordenadas/química , Enfermedades Neurodegenerativas/metabolismo , Tauopatías/tratamiento farmacológico , Proteínas tau/metabolismo
20.
Brain ; 133(9): 2814-29, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20656697

RESUMEN

Brain electrical activity is largely composed of oscillations at characteristic frequencies. These rhythms are hierarchically organized and are thought to perform important pathological and physiological functions. The slow wave is a fundamental cortical rhythm that emerges in deep non-rapid eye movement sleep. In animals, the slow wave modulates delta, theta, spindle, alpha, beta, gamma and ripple oscillations, thus orchestrating brain electrical rhythms in sleep. While slow wave activity can enhance epileptic manifestations, it is also thought to underlie essential restorative processes and facilitate the consolidation of declarative memories. Animal studies show that slow wave activity is composed of rhythmically recurring phases of widespread, increased cortical cellular and synaptic activity, referred to as active- or up-state, followed by cellular and synaptic inactivation, referred to as silent- or down-state. However, its neural mechanisms in humans are poorly understood, since the traditional intracellular techniques used in animals are inappropriate for investigating the cellular and synaptic/transmembrane events in humans. To elucidate the intracortical neuronal mechanisms of slow wave activity in humans, novel, laminar multichannel microelectrodes were chronically implanted into the cortex of patients with drug-resistant focal epilepsy undergoing cortical mapping for seizure focus localization. Intracortical laminar local field potential gradient, multiple-unit and single-unit activities were recorded during slow wave sleep, related to simultaneous electrocorticography, and analysed with current source density and spectral methods. We found that slow wave activity in humans reflects a rhythmic oscillation between widespread cortical activation and silence. Cortical activation was demonstrated as increased wideband (0.3-200 Hz) spectral power including virtually all bands of cortical oscillations, increased multiple- and single-unit activity and powerful inward transmembrane currents, mainly localized to the supragranular layers. Neuronal firing in the up-state was sparse and the average discharge rate of single cells was less than expected from animal studies. Action potentials at up-state onset were synchronized within +/-10 ms across all cortical layers, suggesting that any layer could initiate firing at up-state onset. These findings provide strong direct experimental evidence that slow wave activity in humans is characterized by hyperpolarizing currents associated with suppressed cell firing, alternating with high levels of oscillatory synaptic/transmembrane activity associated with increased cell firing. Our results emphasize the major involvement of supragranular layers in the genesis of slow wave activity.


Asunto(s)
Mapeo Encefálico , Encéfalo/fisiología , Electroencefalografía , Análisis Espectral/métodos , Potenciales de Acción/fisiología , Análisis de Varianza , Animales , Encéfalo/citología , Encéfalo/fisiopatología , Electrofisiología/métodos , Epilepsia/patología , Epilepsia/fisiopatología , Humanos , Neuronas/fisiología , Periodicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA