Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(11): e2208860120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36893274

RESUMEN

XPA is a central scaffold protein that coordinates the assembly of repair complexes in the global genome (GG-NER) and transcription-coupled nucleotide excision repair (TC-NER) subpathways. Inactivating mutations in XPA cause xeroderma pigmentosum (XP), which is characterized by extreme UV sensitivity and a highly elevated skin cancer risk. Here, we describe two Dutch siblings in their late forties carrying a homozygous H244R substitution in the C-terminus of XPA. They present with mild cutaneous manifestations of XP without skin cancer but suffer from marked neurological features, including cerebellar ataxia. We show that the mutant XPA protein has a severely weakened interaction with the transcription factor IIH (TFIIH) complex leading to an impaired association of the mutant XPA and the downstream endonuclease ERCC1-XPF with NER complexes. Despite these defects, the patient-derived fibroblasts and reconstituted knockout cells carrying the XPA-H244R substitution show intermediate UV sensitivity and considerable levels of residual GG-NER (~50%), in line with the intrinsic properties and activities of the purified protein. By contrast, XPA-H244R cells are exquisitely sensitive to transcription-blocking DNA damage, show no detectable recovery of transcription after UV irradiation, and display a severe deficiency in TC-NER-associated unscheduled DNA synthesis. Our characterization of a new case of XPA deficiency that interferes with TFIIH binding and primarily affects the transcription-coupled subpathway of nucleotide excision repair, provides an explanation of the dominant neurological features in these patients, and reveals a specific role for the C-terminus of XPA in TC-NER.


Asunto(s)
Neoplasias Cutáneas , Xerodermia Pigmentosa , Humanos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Alelos , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Reparación del ADN/genética , Daño del ADN/genética , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/metabolismo , Neoplasias Cutáneas/genética , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/metabolismo
2.
EMBO Rep ; 17(3): 414-27, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26882548

RESUMEN

E2F transcription factors control the oscillating expression pattern of multiple target genes during the cell cycle. Activator E2Fs, E2F1-3, induce an upswing of E2F targets, which is essential for the G1-to-S phase transition, whereas atypical E2Fs, E2F7 and E2F8, mediate a downswing of the same targets during late S, G2, and M phases. Expression of atypical E2Fs is induced by E2F1-3, but it is unknown how atypical E2Fs are inactivated in a timely manner. Here, we demonstrate that E2F7 and E2F8 are substrates of the anaphase-promoting complex/cyclosome (APC/C). Removal of CDH1, or mutating the CDH1-interacting KEN boxes, stabilized E2F7/8 from anaphase onwards and during G1. Expressing KEN mutant E2F7 during G1 impairs S phase entry and eventually results in cell death. Furthermore, we show that E2F8, but not E2F7, interacts also with APC/C(C) (dc20). Importantly, atypical E2Fs can activate APC/C(C) (dh1) by repressing its inhibitors cyclin A, cyclin E, and Emi1. In conclusion, we discovered a feedback loop between atypical E2Fs and APC/C(C) (dh1), which ensures balanced expression of cell cycle genes and normal cell cycle progression.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Factores de Transcripción E2F/metabolismo , Retroalimentación Fisiológica , Fase S , Animales , Proteínas Cdh1/genética , Proteínas Cdh1/metabolismo , Células Cultivadas , Ciclinas/metabolismo , Factores de Transcripción E2F/genética , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Unión Proteica
3.
Nat Struct Mol Biol ; 31(3): 536-547, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316879

RESUMEN

During transcription-coupled DNA repair (TCR), RNA polymerase II (Pol II) transitions from a transcriptionally active state to an arrested state that allows for removal of DNA lesions. This transition requires site-specific ubiquitylation of Pol II by the CRL4CSA ubiquitin ligase, a process that is facilitated by ELOF1 in an unknown way. Using cryogenic electron microscopy, biochemical assays and cell biology approaches, we found that ELOF1 serves as an adaptor to stably position UVSSA and CRL4CSA on arrested Pol II, leading to ligase neddylation and activation of Pol II ubiquitylation. In the presence of ELOF1, a transcription factor IIS (TFIIS)-like element in UVSSA gets ordered and extends through the Pol II pore, thus preventing reactivation of Pol II by TFIIS. Our results provide the structural basis for Pol II ubiquitylation and inactivation in TCR.


Asunto(s)
ARN Polimerasa II , Transcripción Genética , ARN Polimerasa II/metabolismo , Reparación por Escisión , Reparación del ADN , ADN/metabolismo , Ubiquitinación , Ligasas , Receptores de Antígenos de Linfocitos T
4.
Nat Cell Biol ; 26(5): 797-810, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600235

RESUMEN

Covalent DNA-protein cross-links (DPCs) are toxic DNA lesions that block replication and require repair by multiple pathways. Whether transcription blockage contributes to the toxicity of DPCs and how cells respond when RNA polymerases stall at DPCs is unknown. Here we find that DPC formation arrests transcription and induces ubiquitylation and degradation of RNA polymerase II. Using genetic screens and a method for the genome-wide mapping of DNA-protein adducts, DPC sequencing, we discover that Cockayne syndrome (CS) proteins CSB and CSA provide resistance to DPC-inducing agents by promoting DPC repair in actively transcribed genes. Consequently, CSB- or CSA-deficient cells fail to efficiently restart transcription after induction of DPCs. In contrast, nucleotide excision repair factors that act downstream of CSB and CSA at ultraviolet light-induced DNA lesions are dispensable. Our study describes a transcription-coupled DPC repair pathway and suggests that defects in this pathway may contribute to the unique neurological features of CS.


Asunto(s)
Síndrome de Cockayne , ADN Helicasas , Enzimas Reparadoras del ADN , Reparación del ADN , Proteínas de Unión a Poli-ADP-Ribosa , ARN Polimerasa II , Humanos , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patología , Aductos de ADN/metabolismo , Aductos de ADN/genética , Daño del ADN , ADN Helicasas/metabolismo , ADN Helicasas/genética , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Reparación por Escisión , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Receptores de Interleucina-17 , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Factores de Transcripción , Transcripción Genética , Ubiquitinación , Rayos Ultravioleta
5.
bioRxiv ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39091731

RESUMEN

Transcription-coupled DNA repair (TCR) removes bulky DNA lesions impeding RNA polymerase II (RNAPII) transcription. Recent studies have outlined the stepwise assembly of TCR factors CSB, CSA, UVSSA, and TFIIH around lesion-stalled RNAPII. However, the mechanism and factors required for the transition to downstream repair steps, including RNAPII removal to provide repair proteins access to the DNA lesion, remain unclear. Here, we identify STK19 as a new TCR factor facilitating this transition. Loss of STK19 does not impact initial TCR complex assembly or RNAPII ubiquitylation but delays lesion-stalled RNAPII clearance, thereby interfering with the downstream repair reaction. Cryo-EM and mutational analysis reveal that STK19 associates with the TCR complex, positioning itself between RNAPII, UVSSA, and CSA. The structural insights and molecular modeling suggest that STK19 positions the ATPase subunits of TFIIH onto DNA in front of RNAPII. Together, these findings provide new insights into the factors and mechanisms required for TCR.

6.
J Exp Med ; 218(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33315086

RESUMEN

ERCC1-XPF is a multifunctional endonuclease involved in nucleotide excision repair (NER), interstrand cross-link (ICL) repair, and DNA double-strand break (DSB) repair. Only two patients with bi-allelic ERCC1 mutations have been reported, both of whom had features of Cockayne syndrome and died in infancy. Here, we describe two siblings with bi-allelic ERCC1 mutations in their teenage years. Genomic sequencing identified a deletion and a missense variant (R156W) within ERCC1 that disrupts a salt bridge below the XPA-binding pocket. Patient-derived fibroblasts and knock-in epithelial cells carrying the R156W substitution show dramatically reduced protein levels of ERCC1 and XPF. Moreover, mutant ERCC1 weakly interacts with NER and ICL repair proteins, resulting in diminished recruitment to DNA damage. Consequently, patient cells show strongly reduced NER activity and increased chromosome breakage induced by DNA cross-linkers, while DSB repair was relatively normal. We report a new case of ERCC1 deficiency that severely affects NER and considerably impacts ICL repair, which together result in a unique phenotype combining short stature, photosensitivity, and progressive liver and kidney dysfunction.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Riñón/patología , Riñón/fisiopatología , Mutación/genética , Alelos , Sustitución de Aminoácidos , Secuencia de Bases , Línea Celular , Citoplasma/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/metabolismo , Endonucleasas/deficiencia , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Luz , Hígado/patología , Hígado/fisiopatología , Proteínas Mutantes/metabolismo , Mutación Missense/genética , Estabilidad Proteica , Hermanos
7.
Nat Cell Biol ; 23(6): 595-607, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34108663

RESUMEN

Cells employ transcription-coupled repair (TCR) to eliminate transcription-blocking DNA lesions. DNA damage-induced binding of the TCR-specific repair factor CSB to RNA polymerase II (RNAPII) triggers RNAPII ubiquitylation of a single lysine (K1268) by the CRL4CSA ubiquitin ligase. How CRL4CSA is specifically directed towards K1268 is unknown. Here, we identify ELOF1 as the missing link that facilitates RNAPII ubiquitylation, a key signal for the assembly of downstream repair factors. This function requires its constitutive interaction with RNAPII close to K1268, revealing ELOF1 as a specificity factor that binds and positions CRL4CSA for optimal RNAPII ubiquitylation. Drug-genetic interaction screening also revealed a CSB-independent pathway in which ELOF1 prevents R-loops in active genes and protects cells against DNA replication stress. Our study offers key insights into the molecular mechanisms of TCR and provides a genetic framework of the interplay between transcriptional stress responses and DNA replication.


Asunto(s)
Daño del ADN , Reparación del ADN , Factor 1 de Elongación Peptídica/metabolismo , ARN Polimerasa II/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Sistemas CRISPR-Cas , Línea Celular Tumoral , ADN Helicasas/genética , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Humanos , Factor 1 de Elongación Peptídica/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN Polimerasa II/genética , Elongación de la Transcripción Genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética
8.
Sci Rep ; 10(1): 4332, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152397

RESUMEN

Transcription-coupled repair (TCR) removes DNA lesions from the transcribed strand of active genes. Stalling of RNA polymerase II (RNAPII) at DNA lesions initiates TCR through the recruitment of the CSB and CSA proteins. The full repertoire of proteins required for human TCR - particularly in a chromatin context - remains to be determined. Studies in mice have revealed that the nucleosome-binding protein HMGN1 is required to enhance the repair of UV-induced lesions in transcribed genes. However, whether HMGN1 is required for human TCR remains unaddressed. Here, we show that knockout or knockdown of HMGN1, either alone or in combination with HMGN2, does not render human cells sensitive to UV light or Illudin S-induced transcription-blocking DNA lesions. Moreover, transcription restart after UV irradiation was not impaired in HMGN-deficient cells. In contrast, TCR-deficient cells were highly sensitive to DNA damage and failed to restart transcription. Furthermore, GFP-tagged HMGN1 was not recruited to sites of UV-induced DNA damage under conditions where GFP-CSB readily accumulated. In line with this, HMGN1 did not associate with the TCR complex, nor did TCR proteins require HMGN1 to associate with DNA damage-stalled RNAPII. Together, our findings suggest that HMGN1 and HMGN2 are not required for human TCR.


Asunto(s)
Reparación del ADN , Proteína HMGN1/genética , Proteína HMGN2/genética , Transcripción Genética , Línea Celular , Daño del ADN/genética , Daño del ADN/efectos de la radiación , Técnicas de Inactivación de Genes , Proteína HMGN1/metabolismo , Proteína HMGN2/metabolismo , Humanos , Tolerancia a Radiación , Telomerasa/genética , Telomerasa/metabolismo , Transcripción Genética/efectos de la radiación , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA