Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 111(45): 16136-41, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25331895

RESUMEN

Depression and anxiety disorders are associated with increased release of peripheral cytokines; however, their functional relevance remains unknown. Using a social stress model in mice, we find preexisting individual differences in the sensitivity of the peripheral immune system that predict and promote vulnerability to social stress. Cytokine profiles were obtained 20 min after the first social stress exposure. Of the cytokines regulated by stress, IL-6 was most highly up-regulated only in mice that ultimately developed a susceptible behavioral phenotype following a subsequent chronic stress, and levels remained elevated for at least 1 mo. We confirmed a similar elevation of serum IL-6 in two separate cohorts of patients with treatment-resistant major depressive disorder. Before any physical contact in mice, we observed individual differences in IL-6 levels from ex vivo stimulated leukocytes that predict susceptibility versus resilience to a subsequent stressor. To shift the sensitivity of the peripheral immune system to a pro- or antidepressant state, bone marrow (BM) chimeras were generated by transplanting hematopoietic progenitor cells from stress-susceptible mice releasing high IL-6 or from IL-6 knockout (IL-6(-/-)) mice. Stress-susceptible BM chimeras exhibited increased social avoidance behavior after exposure to either subthreshold repeated social defeat stress (RSDS) or a purely emotional stressor termed witness defeat. IL-6(-/-) BM chimeric and IL-6(-/-) mice, as well as those treated with a systemic IL-6 monoclonal antibody, were resilient to social stress. These data establish that preexisting differences in stress-responsive IL-6 release from BM-derived leukocytes functionally contribute to social stress-induced behavioral abnormalities.


Asunto(s)
Trastornos de Ansiedad/inmunología , Conducta Animal , Interleucina-6/inmunología , Estrés Psicológico/inmunología , Aloinjertos , Animales , Trastornos de Ansiedad/genética , Trastornos de Ansiedad/patología , Trasplante de Médula Ósea , Susceptibilidad a Enfermedades/inmunología , Susceptibilidad a Enfermedades/patología , Interleucina-6/genética , Ratones , Ratones Noqueados , Estrés Psicológico/genética , Estrés Psicológico/patología , Factores de Tiempo , Quimera por Trasplante/genética , Quimera por Trasplante/inmunología
2.
Psychopharmacology (Berl) ; 238(6): 1417-1436, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33694032

RESUMEN

BACKGROUND: There is urgent need for new medications for psychiatric disorders. Mental illness is expected to become the leading cause of disability worldwide by 2030. Yet, the last two decades have seen the pharmaceutical industry withdraw from psychiatric drug discovery after costly late-stage trial failures in which clinical efficacy predicted pre-clinically has not materialised, leading to a crisis in confidence in preclinical psychopharmacology. METHODS: Based on a review of the relevant literature, we formulated some principles for improving investment in translational neuroscience aimed at psychiatric drug discovery. RESULTS: We propose the following 8 principles that could be used, in various combinations, to enhance CNS drug discovery: (1) consider incorporating the NIMH Research Domain Criteria (RDoC) approach; (2) engage the power of translational and systems neuroscience approaches; (3) use disease-relevant experimental perturbations; (4) identify molecular targets via genomic analysis and patient-derived pluripotent stem cells; (5) embrace holistic neuroscience: a partnership with psychoneuroimmunology; (6) use translational measures of neuronal activation; (7) validate the reproducibility of findings by independent collaboration; and (8) learn and reflect. We provide recent examples of promising animal-to-human translation of drug discovery projects and highlight some that present re-purposing opportunities. CONCLUSIONS: We hope that this review will re-awaken the pharma industry and mental health advocates to the opportunities for improving psychiatric pharmacotherapy and so restore confidence and justify re-investment in the field.


Asunto(s)
Descubrimiento de Drogas , Trastornos Mentales/tratamiento farmacológico , Psicofarmacología , Animales , Industria Farmacéutica , Humanos , Reproducibilidad de los Resultados
3.
Int J Neuropsychopharmacol ; 13(3): 405-10, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19835670

RESUMEN

Adrenergic (alpha1 and alpha2) and cholinergic muscarinic (M1-M5) receptor binding in rat forebrain was quantified after 4 wk of twice-daily subcutaneous administration of asenapine or vehicle. Asenapine (0.03, 0.1, and 0.3 mg/kg) produced increases in [3H]prazosin binding to alpha1-adrenergic receptors in the medial prefrontal cortex (mPFC: 30%, 39%, 57%) and dorsolateral frontal cortex (DFC: 27%, 37%, 53%) and increased [3H]RX821002 binding to alpha2-adrenergic receptors in mPFC (36%, 43%, 50%) and DFC (41%, 44%, 52%). Despite showing no appreciable affinity for muscarinic receptors, asenapine produced regionally selective increases in binding of [3H]QNB to M1-M5 receptors in mPFC (26%, 31%, 43%), DFC (27%, 34%, 41%), and hippocampal CA1 (40%, 44%, 42%) and CA3 (25%, 52%, 48%) regions. These regionally selective effects of asenapine on adrenergic and cholinergic muscarinic receptor subtypes may contribute to its beneficial clinical effects in the treatment of schizophrenia and bipolar disorder.


Asunto(s)
Antipsicóticos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Prosencéfalo/efectos de los fármacos , Receptores Adrenérgicos/metabolismo , Receptores Muscarínicos/metabolismo , Adrenérgicos/farmacocinética , Animales , Unión Competitiva/efectos de los fármacos , Colinérgicos/farmacocinética , Dibenzocicloheptenos , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Técnicas In Vitro , Prosencéfalo/metabolismo , Unión Proteica/efectos de los fármacos , Ensayo de Unión Radioligante/métodos , Ratas , Distribución Tisular/efectos de los fármacos , Tritio/metabolismo
4.
Int J Neuropsychopharmacol ; 13(9): 1269-84, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20716397

RESUMEN

Innovation is essential for the identification of novel pharmacological therapies to meet the treatment needs of patients with psychiatric disorders. However, over the last 20 yr, in spite of major investments targets falling outside the classical aminergic mechanisms have shown diminished returns. The disappointments are traced to failures in the target identification and target validation effort, as reflected by the poor ability of current bioassays and animal models to predict efficacy and side-effects. Mismatch between disease biology and how psychiatric diseases are categorized has resulted in clinical trials of highly specific agents in heterogeneous patients, leading to variable treatment effects and failed studies. As drug hunters, one sees the opportunity to overhaul the pharmaceutical research and development (R&D) process. Improvements in both preclinical and clinical translational research need to be considered. Linking pharmacodynamic markers with disease biology should provide more predictive and innovative early clinical trials which in turn will increase the success rate of discovering new medicines. However, to exploit these exciting scientific discoveries, pharmaceutical companies need to question the conventional drug research and development model which is silo-driven, non-integrative across the confines of a company, non-disclosing across the pharmaceutical industry, and often independent from academia. This leads to huge redundancy in effort and lack of contextual learning in real time. Nevertheless, there are signs that drug discovery in the 21st century will see more intentional government, academic and industrial collaborations to overcome the above challenges that could eventually link mechanistic disease biology to segments of patients, affording them the benefits of rational and targeted therapy.


Asunto(s)
Diseño de Fármacos , Descubrimiento de Drogas , Industria Farmacéutica , Trastornos Mentales/tratamiento farmacológico , Investigación Biomédica , Ensayos Clínicos como Asunto , Aprobación de Drogas , Sistemas de Liberación de Medicamentos , Humanos , Terapia Molecular Dirigida , Investigación Biomédica Traslacional
5.
Synapse ; 63(5): 413-20, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19177511

RESUMEN

Asenapine, a new pyschopharmacologic agent being developed for the treatment of schizophrenia and bipolar disorder, has a unique human receptor binding signature with strong affinity for dopaminergic, alpha-adrenergic, and, in particular, serotonergic receptors raising the possibility of interactions with glutamatergic receptors. Changes in ionotropic glutamate (Glu) N-methyl-D-aspartic acid (NMDA) receptors and 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propionic acid (AMPA) receptors in rat forebrain regions were quantified after repeated administration of multiple doses of asenapine (0.03, 0.1, or 0.3 mg/kg, subcutaneous, twice/day) or vehicle for 4 weeks. Brain sections were collected from the medial prefrontal cortex (mPFC), dorsolateral frontal cortex, caudate putamen (CPu), nucleus accumbens (NAc), and hippocampus (HIP), and processed for in vitro receptor autoradiography. Four weeks of treatment with 0.03, 0.1, or 0.3 mg/kg of asenapine significantly (P < 0.01) decreased binding of [3H]MK-801 to NMDA/MK-801 modulatory sites in NAc (by 27%, 29%, and 26%, respectively), medial CPu (by 25%, 28%, and 24%), and lateral CPu (by 24%, 31%, and 26%). In contrast, the same doses of asenapine did not alter binding of [3H]glycine to NMDA/glycine modulatory sites in any of the brain regions examined. [3H]AMPA binding to AMPA receptors was selectively and significantly (P < 0.001) elevated in hippocampal CA(1) (41%) and CA(3) (40%) regions but only at the highest dose tested. These results indicate that chronic treatment with asenapine has region-specific and dose-dependent effects on ionotropic Glu-receptor subtypes in rat forebrain, which might contribute to the unique psychopharmacologic properties of asenapine.


Asunto(s)
Antipsicóticos/farmacología , Encéfalo/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Receptores AMPA/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Animales , Autorradiografía/métodos , Sitios de Unión/efectos de los fármacos , Encéfalo/metabolismo , Química Encefálica/efectos de los fármacos , Dibenzocicloheptenos , Maleato de Dizocilpina/farmacología , Relación Dosis-Respuesta a Droga , Antagonistas de Aminoácidos Excitadores/farmacología , Glicina/farmacología , Masculino , Unión Proteica/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Análisis de Regresión , Tritio/farmacología
6.
Curr Opin Investig Drugs ; 9(1): 28-36, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18183529

RESUMEN

There is growing pressure to find more effective therapies for major psychiatric disorders, such as schizophrenia and depressive disorder. The repeated disappointments that have been experienced with highly selective, single-target agents have prompted questions about their relative merits. In contrast, a multi-target agent (MTA) approach, discovered either by serendipity or by judicious design, might offer a more rational way to address the complex clinical demands of patients and their co-morbidities. Rather than being mutually exclusive, a balanced portfolio of the two approaches may offer a beneficial and synergistic outcome toward identification of novel antipsychotic and antidepressant therapies. With improvements in biomarker technology, translational biology and a growing understanding of psychopathology, there is optimism that the new generation of MTAs will finally shed the stigma of 'dirty drugs' and progress to the concept of intentionally designed and tailored psychopharmacological agents.


Asunto(s)
Antipsicóticos/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Esquizofrenia/tratamiento farmacológico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antipsicóticos/farmacología , Diseño de Fármacos , Humanos
7.
Psychopharmacology (Berl) ; 198(1): 103-11, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18297468

RESUMEN

RATIONALE: The novel psychopharmacologic agent, asenapine, has high affinity for a range of receptors including the dopaminergic receptors. OBJECTIVE: We examined the long-term effects of multiple doses of asenapine on dopamine receptor subtypes: D(1)-like (D(1) and D(5)), D(2), D(3), and D(4). METHODS: Rats were given asenapine 0.03, 0.1, or 0.3 mg/kg (subcutaneously, twice daily) or vehicle for 4 weeks. Receptor binding was determined by autoradiography from brain sections collected from the medial prefrontal cortex (mPFC), dorsolateral frontal cortex, caudate putamen (CPu), nucleus accumbens (NAc), and hippocampus (HIP). RESULTS: Four weeks of asenapine at 0.3 mg/kg significantly (P < 0.05) increased D(1)-like binding in the mPFC (by 26%), NAc (59%), and CPu (55%). Asenapine (0.1 and 0.3 mg/kg) also increased D(2) binding in mPFC (43% and 55%, respectively). All doses of asenapine dose-dependently increased D(2) binding in HIP (by 32%, 45%, and 63%, respectively). In contrast, only 0.3 mg/kg of asenapine significantly (P < 0.05) increased D(2) binding in the NAc (32%) and CPu (41%). Repeated treatment with 0.1 and 0.3 mg/kg of asenapine increased D(4) binding in the NAc (36% and 71%), CPu (27% and 70%), and HIP (48% and 77%). However, asenapine, at the doses tested, did not significantly alter D(3) binding in the brain regions examined in this study. CONCLUSIONS: These results indicate that asenapine has region-specific and dose-dependent effects on dopamine receptor subtypes in rat forebrain, which may contribute to asenapine's unique psychopharmacological properties.


Asunto(s)
Antipsicóticos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Receptores Dopaminérgicos/efectos de los fármacos , Animales , Autorradiografía , Química Encefálica/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Dibenzocicloheptenos , Relación Dosis-Respuesta a Droga , Procesamiento de Imagen Asistido por Computador , Masculino , Neostriado/efectos de los fármacos , Neostriado/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D1/efectos de los fármacos , Receptores de Dopamina D2/efectos de los fármacos , Receptores de Dopamina D3/efectos de los fármacos , Receptores de Dopamina D4/efectos de los fármacos
8.
Psychopharmacology (Berl) ; 196(3): 417-29, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17940749

RESUMEN

RATIONALE: Asenapine is a novel psychopharmacologic agent being developed for the treatment of schizophrenia and bipolar disorder. MATERIALS AND METHODS: The present study was undertaken to investigate the effects of asenapine using animal models predictive of antipsychotic efficacy (conditioned avoidance response [CAR]) and extrapyramidal side effects (EPS; catalepsy). In parallel, the effects of asenapine on regional dopamine output using in vivo microdialysis in freely moving rats, dopamine output in the core and shell subregions of nucleus accumbens (NAc) using in vivo voltammetry in anesthetized rats, and N-methyl-D: -aspartate (NMDA)-induced currents in pyramidal neurons of the medial prefrontal cortex (mPFC) using the electrophysiological technique intracellular recording in vitro were assessed. RESULTS: Asenapine (0.05-0.2 mg/kg, subcutaneous [s.c.]) induced a dose-dependent suppression of CAR (no escape failures recorded) and did not induce catalepsy. Asenapine (0.05-0.2 mg/kg, s.c.) increased dopamine efflux in both the mPFC and the NAc. Low-dose asenapine (0.01 mg/kg, intravenous [i.v.]) increased dopamine efflux preferentially in the shell compared to the core of NAc, whereas at a higher dose (0.05 mg/kg, i.v.), the difference disappeared. Finally, like clozapine (100 nM), but at a considerably lower concentration (5 nM), asenapine significantly potentiated the NMDA-induced responses in pyramidal cells of the mPFC. CONCLUSIONS: These preclinical data suggest that asenapine may exhibit highly potent antipsychotic activity with very low EPS liability. Its ability to increase both dopaminergic and glutamatergic activity in rat mPFC suggests that asenapine may possess an advantageous effect not only on positive symptoms in patients with schizophrenia, but also on negative and cognitive symptoms.


Asunto(s)
Antipsicóticos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Esquizofrenia/tratamiento farmacológico , Animales , Antipsicóticos/administración & dosificación , Antipsicóticos/efectos adversos , Reacción de Prevención , Catalepsia/inducido químicamente , Condicionamiento Clásico , Dibenzocicloheptenos , Modelos Animales de Enfermedad , Dopamina/metabolismo , Relación Dosis-Respuesta a Droga , Electrofisiología , Compuestos Heterocíclicos de 4 o más Anillos/administración & dosificación , Compuestos Heterocíclicos de 4 o más Anillos/efectos adversos , Inyecciones Subcutáneas , Masculino , Microdiálisis , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas , Ratas Wistar
9.
Eur J Pharmacol ; 591(1-3): 136-41, 2008 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-18593577

RESUMEN

An in vivo binding assay is characterized for [(3)H]M100907 binding to rat brain, as a measure of 5-HT(2A) receptor occupancy. Dose-response analyses were performed for various 5-HT(2A) antagonist reference agents, providing receptor occupancy ED(50) values in conjunction with plasma and brain concentration levels. Ketanserin and M100907 yielded dose-dependent increases in 5-HT(2A) receptor occupancy with ED(50)s of 0.316 mg/kg and 0.100 mg/kg, respectively. The atypical antipsychotics risperidone, olanzapine, and clozapine dose-dependently inhibited in vivo [(3)H]M100907 binding with ED(50) values of 0.051, 0.144, and 1.17 mg/kg, respectively. In contrast, the typical antipsychotic haloperidol exhibited only 20.1% receptor occupancy at 10 mg/kg despite producing dose-dependent increases in plasma and brain exposure levels. The novel psychopharmacologic agent asenapine dose-dependently occupied 5-HT(2A) receptors in rat brain with an ED(50) of 0.011 mg/kg, demonstrating higher 5-HT(2A) receptor potency compared with the other atypical antipsychotics tested. This enhanced potency was supported by a lower plasma exposure EC(50) of 0.477 ng/ml, compared with risperidone (1.57 ng/ml) and olanzapine (7.81 ng/ml) and was confirmed in time course studies. The validated [(3)H]M100907 rat in vivo binding assay allows for preclinical measurement of 5-HT(2A) receptor occupancy, providing essential data for understanding the pharmacological profile of novel antipsychotic agents. Additionally, the corresponding plasma and brain drug exposure data analyses provides a valuable data set for 5-HT(2A) reference agents by enabling direct comparison with any complementary studies performed in rats, thus providing a foundation for predictive pharmacokinetic/pharmacodynamic models and, importantly, allowing for translation to human receptor occupancy studies using [(11)C]M100907 positron emission tomography.


Asunto(s)
Fluorobencenos/metabolismo , Piperidinas/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Antagonistas de la Serotonina/metabolismo , Animales , Antipsicóticos/administración & dosificación , Antipsicóticos/metabolismo , Antipsicóticos/farmacocinética , Encéfalo/metabolismo , Relación Dosis-Respuesta a Droga , Fluorobencenos/administración & dosificación , Fluorobencenos/farmacocinética , Humanos , Masculino , Piperidinas/administración & dosificación , Piperidinas/farmacocinética , Tomografía de Emisión de Positrones/métodos , Unión Proteica , Ratas , Ratas Sprague-Dawley , Antagonistas de la Serotonina/administración & dosificación , Antagonistas de la Serotonina/farmacocinética , Distribución Tisular
10.
J Med Chem ; 49(14): 4425-36, 2006 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-16821801

RESUMEN

N-[(3R)-1-Azabicyclo[2.2.2]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide (14, PHA-543,613), a novel agonist of the alpha7 neuronal nicotinic acetylcholine receptor (alpha7 nAChR), has been identified as a potential treatment of cognitive deficits in schizophrenia. Compound 14 is a potent and selective alpha7 nAChR agonist with an excellent in vitro profile. The compound is characterized by rapid brain penetration and high oral bioavailability in rat and demonstrates in vivo efficacy in auditory sensory gating and, in an in vivo model to assess cognitive performance, novel object recognition.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/síntesis química , Trastornos del Conocimiento/tratamiento farmacológico , Agonistas Nicotínicos/síntesis química , Nootrópicos/síntesis química , Quinuclidinas/síntesis química , Receptores Nicotínicos/metabolismo , Esquizofrenia/tratamiento farmacológico , Animales , Disponibilidad Biológica , Encéfalo/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Estabilidad de Medicamentos , Canales de Potasio Éter-A-Go-Go/efectos de los fármacos , Potenciales Evocados Auditivos/efectos de los fármacos , Humanos , Técnicas In Vitro , Aprendizaje/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Neuronas/efectos de los fármacos , Neuronas/fisiología , Agonistas Nicotínicos/farmacocinética , Agonistas Nicotínicos/farmacología , Nootrópicos/farmacocinética , Nootrópicos/farmacología , Técnicas de Placa-Clamp , Quinuclidinas/química , Quinuclidinas/farmacología , Ensayo de Unión Radioligante , Ratas , Ratas Sprague-Dawley , Receptores Nicotínicos/fisiología , Reconocimiento en Psicología/efectos de los fármacos , Estereoisomerismo , Relación Estructura-Actividad , Receptor Nicotínico de Acetilcolina alfa 7
12.
Nat Commun ; 7: 11671, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27216573

RESUMEN

Less than half of patients suffering from major depressive disorder, a leading cause of disability worldwide, achieve remission with current antidepressants, making it imperative to develop more effective treatment. A new therapeutic direction is emerging from the increased understanding of natural resilience as an active stress-coping process. It is known that potassium (K(+)) channels in the ventral tegmental area (VTA) are an active mediator of resilience. However, no druggable targets have been identified to potentiate active resilience mechanisms. In the chronic social defeat stress model of depression, we report that KCNQ-type K(+) channel openers, including FDA-approved drug retigabine (ezogabine), show antidepressant efficacy. We demonstrate that overexpression of KCNQ channels in the VTA dopaminergic neurons and either local infusion or systemic administration of retigabine normalized neuronal hyperactivity and depressive behaviours. These findings identify KCNQ as a target for conceptually novel antidepressants that function through the potentiation of active resilience mechanisms.


Asunto(s)
Trastorno Depresivo Mayor/tratamiento farmacológico , Canal de Potasio KCNQ3/metabolismo , Moduladores del Transporte de Membrana/farmacología , Resiliencia Psicológica/efectos de los fármacos , Estrés Psicológico/tratamiento farmacológico , Adaptación Psicológica/efectos de los fármacos , Adaptación Psicológica/fisiología , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Carbamatos/farmacología , Carbamatos/uso terapéutico , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/psicología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Fenómenos Electrofisiológicos , Humanos , Masculino , Moduladores del Transporte de Membrana/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Fenilendiaminas/farmacología , Fenilendiaminas/uso terapéutico , Estrés Psicológico/metabolismo , Estrés Psicológico/psicología , Área Tegmental Ventral/citología , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/fisiología
13.
J Med Chem ; 48(4): 905-8, 2005 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-15715459

RESUMEN

A library of benzamides was tested for alpha7 nicotinic acetylcholine receptor (nAChR) agonist activity using a chimeric receptor in a functional, cell-based, high-throughput assay. From this library, quinuclidine benzamides were found to have alpha7 nAChR agonist activity. The SAR diverged from the activity of this compound class verses the 5-HT(3) receptor, a structural homologue of the alpha7 nAChR. PNU-282987, the most potent compound from this series, was also shown to open native alpha7 nAChRs in cultured rat neurons and to reverse an amphetamine-induced gating deficit in rats.


Asunto(s)
Benzamidas/síntesis química , Agonistas Nicotínicos/síntesis química , Quinuclidinas/síntesis química , Receptores Nicotínicos/efectos de los fármacos , Animales , Benzamidas/química , Benzamidas/farmacología , Células Cultivadas , Técnicas Químicas Combinatorias , Hipocampo/citología , Activación del Canal Iónico/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Agonistas Nicotínicos/química , Agonistas Nicotínicos/farmacología , Técnicas de Placa-Clamp , Quinuclidinas/química , Quinuclidinas/farmacología , Ensayo de Unión Radioligante , Ratas , Receptores Nicotínicos/metabolismo , Agonistas del Receptor de Serotonina 5-HT3 , Estereoisomerismo , Relación Estructura-Actividad , Receptor Nicotínico de Acetilcolina alfa 7
14.
Psychopharmacology (Berl) ; 232(21-22): 4129-57, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25921033

RESUMEN

RATIONALE: This review attempts to summarize the current status in relation to the use of positron emission tomography (PET) imaging in the assessment of synaptic concentrations of endogenous mediators in the living brain. OBJECTIVES: Although PET radioligands are now available for more than 40 CNS targets, at the initiation of the Innovative Medicines Initiative (IMI) "Novel Methods leading to New Medications in Depression and Schizophrenia" (NEWMEDS) in 2009, PET radioligands sensitive to an endogenous neurotransmitter were only validated for dopamine. NEWMEDS work-package 5, "Cross-species and neurochemical imaging (PET) methods for drug discovery", commenced with a focus on developing methods enabling assessment of changes in extracellular concentrations of serotonin and noradrenaline in the brain. RESULTS: Sharing the workload across institutions, we utilized in vitro techniques with cells and tissues, in vivo receptor binding and microdialysis techniques in rodents, and in vivo PET imaging in non-human primates and humans. Here, we discuss these efforts and review other recently published reports on the use of radioligands to assess changes in endogenous levels of dopamine, serotonin, noradrenaline, γ-aminobutyric acid, glutamate, acetylcholine, and opioid peptides. The emphasis is on assessment of the availability of appropriate translational tools (PET radioligands, pharmacological challenge agents) and on studies in non-human primates and human subjects, as well as current challenges and future directions. CONCLUSIONS: PET imaging directed at investigating changes in endogenous neurochemicals, including the work done in NEWMEDS, have highlighted an opportunity to further extend the capability and application of this technology in drug development.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Neurotransmisores/metabolismo , Tomografía de Emisión de Positrones/métodos , Transmisión Sináptica/fisiología , Animales , Humanos
15.
Mol Autism ; 5: 38, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25061506

RESUMEN

BACKGROUND: Over the last decade, the transgenic N-methyl-D-aspartate receptor (NMDAR) NR1-knockdown mouse (NR1(neo-/-)) has been investigated as a glutamate hypofunction model for schizophrenia. Recent research has now revealed that the model also recapitulates cognitive and negative symptoms in the continuum of other psychiatric diseases, particularly autism spectrum disorders (ASD). As previous studies have mostly focussed on behavioural readouts, a molecular characterisation of this model will help to identify novel biomarkers or potential drug targets. METHODS: Here, we have used multiplex immunoassay analyses to investigate peripheral analyte alterations in serum of NR1(neo-/-) mice, as well as a combination of shotgun label-free liquid chromatography mass spectrometry, bioinformatic pathway analyses, and a shotgun-based 40-plex selected reaction monitoring (SRM) assay to investigate altered molecular pathways in the frontal cortex and hippocampus. All findings were cross compared to identify translatable findings between the brain and periphery. RESULTS: Multiplex immunoassay profiling led to identification of 29 analytes that were significantly altered in sera of NR1(neo-/-) mice. The highest magnitude changes were found for neurotrophic factors (VEGFA, EGF, IGF-1), apolipoprotein A1, and fibrinogen. We also found decreased levels of several chemokines. Following this, LC-MS(E) profiling led to identification of 48 significantly changed proteins in the frontal cortex and 41 in the hippocampus. In particular, MARCS, the mitochondrial pyruvate kinase, and CamKII-alpha were affected. Based on the combination of protein set enrichment and bioinformatic pathway analysis, we designed orthogonal SRM-assays which validated the abnormalities of proteins involved in synaptic long-term potentiation, myelination, and the ERK-signalling pathway in both brain regions. In contrast, increased levels of proteins involved in neurotransmitter metabolism and release were found only in the frontal cortex and abnormalities of proteins involved in the purinergic system were found exclusively in the hippocampus. CONCLUSIONS: Taken together, this multi-platform profiling study has identified peripheral changes which are potentially linked to central alterations in synaptic plasticity and neuronal function associated with NMDAR-NR1 hypofunction. Therefore, the reported proteomic changes may be useful as translational biomarkers in human and rodent model drug discovery efforts.

16.
PLoS One ; 9(1): e85136, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24465494

RESUMEN

BACKGROUND: Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are the most common form of medication treatment for major depression. However, approximately 50% of depressed patients fail to achieve an effective treatment response. Understanding how gene expression systems respond to treatments may be critical for understanding antidepressant resistance. METHODS: We take a novel approach to this problem by demonstrating that the gene expression system of the dentate gyrus responds to fluoxetine (FLX), a commonly used antidepressant medication, in a stereotyped-manner involving changes in the expression levels of thousands of genes. The aggregate behavior of this large-scale systemic response was quantified with principal components analysis (PCA) yielding a single quantitative measure of the global gene expression system state. RESULTS: Quantitative measures of system state were highly correlated with variability in levels of antidepressant-sensitive behaviors in a mouse model of depression treated with fluoxetine. Analysis of dorsal and ventral dentate samples in the same mice indicated that system state co-varied across these regions despite their reported functional differences. Aggregate measures of gene expression system state were very robust and remained unchanged when different microarray data processing algorithms were used and even when completely different sets of gene expression levels were used for their calculation. CONCLUSIONS: System state measures provide a robust method to quantify and relate global gene expression system state variability to behavior and treatment. State variability also suggests that the diversity of reported changes in gene expression levels in response to treatments such as fluoxetine may represent different perspectives on unified but noisy global gene expression system state level responses. Studying regulation of gene expression systems at the state level may be useful in guiding new approaches to augmentation of traditional antidepressant treatments.


Asunto(s)
Antidepresivos/uso terapéutico , Conducta Animal , Giro Dentado/metabolismo , Regulación de la Expresión Génica , Animales , Antidepresivos/farmacología , Giro Dentado/efectos de los fármacos , Giro Dentado/patología , Depresión/tratamiento farmacológico , Depresión/genética , Modelos Animales de Enfermedad , Fluoxetina/farmacología , Fluoxetina/uso terapéutico , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Componente Principal , Reproducibilidad de los Resultados , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
17.
Neuropharmacology ; 62(3): 1442-52, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21875607

RESUMEN

PURPOSE: Repeated, intermittent administration of the psychotropic NMDA antagonist phencyclidine (PCP) to laboratory animals causes impairment in cognitive and executive functions, modeling important sequelae of schizophrenia; these effects are thought to be due to a dysregulation of neurotransmission within the prefrontal cortex. Atypical antipsychotic drugs have been reported to have measurable, if incomplete, effects on cognitive dysfunction in this model, and these effects may be due to their ability to normalize a subset of the physiological deficits occurring within the prefrontal cortex. Asenapine is an atypical antipsychotic approved in the US for the treatment of schizophrenia and for the treatment, as monotherapy or adjunctive therapy to lithium or valproate, of acute manic or mixed episodes associated bipolar I disorder. To understand its cognitive and neurochemical actions more fully, we explored the effects of short- and long-term dosing with asenapine on measures of cognitive and motor function in normal monkeys and in those previously exposed for 2 weeks to PCP; we further studied the impact of treatment with asenapine on dopamine and serotonin turnover in discrete brain regions from the same cohort. METHODS: Monkeys were trained to perform reversal learning and object retrieval procedures before twice daily administration of PCP (0.3 mg/kg intra-muscular) or saline for 14 days. Tests confirmed cognitive deficits in PCP-exposed animals before beginning twice daily administration of saline (control) or asenapine (50, 100, or 150 µg/kg, intra-muscular). Dopamine and serotonin turnover were assessed in 15 specific brain regions by high-pressure liquid chromatography measures of the ratio of parent amine to its major metabolite. RESULTS: On average, PCP-treated monkeys made twice as many errors in the reversal task as did control monkeys. Asenapine facilitated reversal learning performance in PCP-exposed monkeys, with improvements at trend level after 1 week of administration and reaching significance after 2-4 weeks of dosing. In week 4, the improvement with asenapine 150 µg/kg (p = 0.01) rendered the performance of PCP-exposed monkeys indistinguishable from that of normal monkeys without compromising fine motor function. Asenapine administration (150 µg/kg twice daily) produced an increase in dopamine and serotonin turnover in most brain regions of control monkeys and asenapine (50-150 µg/kg) increased dopamine and serotonin turnover in several brain regions of subchronic PCP-treated monkeys. No significant changes in the steady-state levels of dopamine or serotonin were observed in any brain region except for the central amygdala, in which a significant depletion of dopamine was observed in PCP-treated control monkeys; asenapine treatment reversed this dopamine depletion. A significant decrease in serotonin utilization was observed in the orbitofrontal cortex and nucleus accumbens in PCP monkeys, which may underlie poor reversal learning. In the same brain regions, dopamine utilization was not affected. Asenapine ameliorated this serotonin deficit in a dose-related manner that matched its efficacy for reversing the cognitive deficit. CONCLUSIONS: In this model of cognitive dysfunction, asenapine produced substantial gains in executive functions that were maintained with long-term administration. The cognition-enhancing effects of asenapine and the neurochemical changes in serotonin and dopamine turnover seen in this study are hypothesized to be primarily related to its potent serotonergic and noradrenergic receptor binding properties, and support the potential for asenapine to reduce cognitive dysfunction in patients with schizophrenia and bipolar disorder.


Asunto(s)
Antipsicóticos/uso terapéutico , Monoaminas Biogénicas/metabolismo , Trastornos del Conocimiento/inducido químicamente , Trastornos del Conocimiento/tratamiento farmacológico , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Fenciclidina/toxicidad , Animales , Chlorocebus aethiops , Trastornos del Conocimiento/metabolismo , Dibenzocicloheptenos , Femenino , Masculino , Fenciclidina/administración & dosificación , Desempeño Psicomotor/efectos de los fármacos , Aprendizaje Inverso/efectos de los fármacos , Resultado del Tratamiento
18.
J Psychopharmacol ; 25(10): 1388-98, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20699353

RESUMEN

Chronic mild stress (CMS)-induced 'anhedonia' is a predictive model of antidepressant activity. We assessed the reversal of CMS-induced behavioral changes by asenapine, the antidepressant imipramine, and the atypical antipsychotics olanzapine and risperidone. Secondarily, the ability of these agents to facilitate intracranial self-stimulation (ICSS) was assessed to ensure that any attenuation of CMS-induced anhedonia was not associated with an overt hedonic profile. After 2 weeks of CMS, male Wistar rats were administered asenapine (0.06-0.6 mg/kg), olanzapine (2 mg/kg), risperidone (0.5 mg/kg), or imipramine (10 mg/kg) by intraperitoneal injection over 5 weeks to examine their ability to reverse CMS-induced reductions in the intake of a sucrose solution. For the ICSS study, rats were trained to deliver an electrical stimulus to the ventral tegmental area. The effects of acute doses of subcutaneous asenapine (0.01-0.3 mg/kg), olanzapine (0.3 and 1 mg/kg), risperidone (0.1 and 0.3 mg/kg), and intraperitoneal imipramine (3-30 mg/kg), cocaine (5.0 mg/kg), or amphetamine (1.0 mg/kg) on ICSS were then examined. CMS significantly reduced sucrose intake (P < 0.001). All active agents (0.6 mg/kg asenapine, 2 mg/kg olanzapine, 0.5 mg/kg risperidone, and 10 mg/kg imipramine) reversed the effect of CMS (all P < 0.001). In the ICSS protocol, asenapine (0.01 and 0.03 mg/kg), olanzapine (1 mg/kg), and risperidone (0.3 mg/kg) impaired ICSS performance, whereas positive controls (5 mg/kg cocaine, 1 mg/kg amphetamine) facilitated ICSS. Asenapine reversed CMS-induced anhedonia without facilitating ICSS, providing support for a role of asenapine in treating bipolar disorder and aspects of negative and/or affective symptoms in schizophrenia.


Asunto(s)
Anhedonia/efectos de los fármacos , Antipsicóticos/uso terapéutico , Encéfalo/fisiología , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Autoestimulación , Estrés Psicológico/complicaciones , Animales , Benzodiazepinas/uso terapéutico , Enfermedad Crónica , Dibenzocicloheptenos , Imipramina/farmacología , Masculino , Olanzapina , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Risperidona/uso terapéutico
19.
Int Rev Neurobiol ; 101: 329-49, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22050858

RESUMEN

There are great expectations for the personalized medicine approach to address the therapeutic needs of patients in the twenty-first century. Advances in human genome science and molecular innovations in neuroscience have encouraged the pharmaceutical industry to focus beyond broad spectrum population therapeutics--the driving force behind the "blockbuster" product concept--to personalized medicine. For central nervous system (CNS) therapeutics, repeated failures in converting scientific discoveries to clinical trial successes and regulatory approvals have precipitated a drug pipeline crisis and eroded confidence in the industry. This chapter describes how innovations in genomics and translational medicine can impact the future of neuropsychiatry and deconvolute the complexity of psychiatric diseases from symptoms biology. A targeted and consistent investment is needed to restore confidence in translating science into clinical success.


Asunto(s)
Industria Farmacéutica/métodos , Trastornos Neurocognitivos/tratamiento farmacológico , Neuropsiquiatría/métodos , Farmacogenética/métodos , Medicina de Precisión/métodos , Investigación Biomédica Traslacional/métodos , Diseño de Fármacos , Industria Farmacéutica/tendencias , Humanos , Trastornos Neurocognitivos/genética , Neurofarmacología/métodos , Neurofarmacología/tendencias , Neuropsiquiatría/tendencias , Farmacogenética/tendencias , Medicina de Precisión/tendencias , Investigación Biomédica Traslacional/tendencias
20.
Neuropharmacology ; 61(3): 408-13, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21356220

RESUMEN

Depression is a polygenic and highly complex psychiatric disorder that is currently a major burden on society. Depression is highly heterogeneous in presentation and frequently exhibits high comorbidity with other psychiatric and somatic disorders. Commonly used treatments, such as selective serotonin reuptake inhibitors (SSRIs), are not ideal since only a subset of patients achieve remission. In addition, the reason why some individuals respond to SSRIs while others don't are unknown. Here we begin to ask what the basis of treatment resistance is, and propose new strategies to model this phenomenon in animals. We focus specifically on animal models that offer the appropriate framework to study treatment resistance with face, construct and predictive validity.


Asunto(s)
Trastorno Depresivo/tratamiento farmacológico , Modelos Animales de Enfermedad , Animales , Conducta Animal/efectos de los fármacos , Depresión/tratamiento farmacológico , Depresión/metabolismo , Trastorno Depresivo/metabolismo , Resistencia a Medicamentos , Humanos , Ratas , Receptor de Serotonina 5-HT1A/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Estrés Fisiológico/efectos de los fármacos , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA