Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Molecules ; 27(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35458660

RESUMEN

The treatment of a variety of protozoal infections, in particular those causing disabling human diseases, is still hampered by a lack of drugs or increasing resistance to registered drugs. However, in recent years, remarkable progress has been achieved to combat neglected tropical diseases by sequencing the parasites' genomes or the validation of new targets in the parasites by novel genetic manipulation techniques, leading to loss of function. The novel amino acid hypusine is a posttranslational modification (PTM) that occurs in eukaryotic initiation factor 5A (EIF5A) at a specific lysine residue. This modification occurs by two steps catalyzed by deoxyhypusine synthase (dhs) and deoxyhypusine hydroxylase (DOHH) enzymes. dhs from Plasmodium has been validated as a druggable target by small molecules and reverse genetics. Recently, the synthesis of a series of human dhs inhibitors led to 6-bromo-N-(1H-indol-4yl)-1-benzothiophene-2-carboxamide, a potent allosteric inhibitor with an IC50 value of 0.062 µM. We investigated this allosteric dhs inhibitor in Plasmodium. In vitro P. falciparum growth assays showed weak inhibition activity, with IC50 values of 46.1 µM for the Dd2 strain and 51.5 µM for the 3D7 strain, respectively. The antimalarial activity could not be attributed to the targeting of the Pfdhs gene, as shown by chemogenomic profiling with transgenically modified P. falciparum lines. Moreover, in dose-dependent enzymatic assays with purified recombinant P. falciparum dhs protein, only 45% inhibition was observed at an inhibitor dose of 0.4 µM. These data are in agreement with a homology-modeled Pfdhs, suggesting significant structural differences in the allosteric site between the human and parasite enzymes. Virtual screening of the allosteric database identified candidate ligand binding to novel binding pockets identified in P. falciparum dhs, which might foster the development of parasite-specific inhibitors.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Plasmodium , Inhibidores Enzimáticos/farmacología , Humanos , Oxigenasas de Función Mixta/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Plasmodium/metabolismo , Proteínas Recombinantes/metabolismo , Tiofenos/farmacología
2.
BMC Genomics ; 16: 830, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26490244

RESUMEN

BACKGROUND: Control of malaria is threatened by emerging parasite resistance to artemisinin and derivative drug (ART) therapies. The molecular detail of how Plasmodium malaria parasites respond to ART and how this could contribute to resistance are not well understood. To address this question, we performed a transcriptomic study of dihydroartemisinin (DHA) response in P. falciparum K1 strain and in P. berghei ANKA strain using microarray and RNA-seq technology. RESULTS: Microarray data from DHA-treated P. falciparum trophozoite stage parasites revealed a response pattern that is overall less trophozoite-like and more like the other stages of asexual development. A meta-analysis of these data with previously published data from other ART treatments revealed a set of common differentially expressed genes. Notably, ribosomal protein genes are down-regulated in response to ART. A similar pattern of trophozoite transcriptomic change was observed from RNA-seq data. RNA-seq data from DHA-treated P. falciparum rings reveal a more muted response, although there is considerable overlap of differentially expressed genes with DHA-treated trophozoites. No genes are differentially expressed in DHA-treated P. falciparum schizonts. The transcriptional response of P. berghei to DHA treatment in vivo in infected mice is similar to the P. falciparum in vitro culture ring and trophozoite responses, in which ribosomal protein genes are notably down-regulated. CONCLUSIONS: Ring and trophozoite stage Plasmodium respond to ART by arresting metabolic processes such as protein synthesis and glycolysis. This response can be protective in rings, as shown by the phenomenon of dormancy. In contrast, this response is not as protective in trophozoites owing to their commitment to a highly active and vulnerable metabolic state. The lower metabolic demands of schizonts could explain why they are less sensitive and unresponsive to ART. The ART response pattern is revealed clearly from RNA-seq data, suggesting that this technology is of great utility for studying drug response in Plasmodium.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Plasmodium/efectos de los fármacos , Plasmodium/genética , Transcriptoma , Análisis por Conglomerados , Biología Computacional/métodos , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular
3.
Mol Biochem Parasitol ; 247: 111443, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34890716

RESUMEN

Eukaryotic messenger RNA is translated via a 5' cap-dependent initiation mechanism. Experimental evidence for proteins involved with translation initiation among eukaryotic parasites is lacking, including Plasmodium falciparum, the human malaria parasite. Native P. falciparum proteins from asexual stage parasites were enriched using a 5' cap affinity matrix. Proteomic analysis of enriched protein eluates revealed proteins putatively associated with the 5' cap. The canonical 5' cap-binding protein eIF4E (PF3D7_0315100) was the most reproducibly enriched protein. The eIF4A and eIF4G proteins hypothesized to form the eIF4F initiation complex with eIF4E were also detected as 5' cap enriched, albeit with low reproducibility. Surprisingly, enolase (ENO) was the second most enriched protein after eIF4E. Recombinant ENO protein did not demonstrate 5' cap activity, suggesting an indirect association of the native ENO with the 5' cap.


Asunto(s)
Malaria , Parásitos , Animales , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Humanos , Parásitos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo , Reproducibilidad de los Resultados
4.
PLoS One ; 17(11): e0276956, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36331983

RESUMEN

The Plasmodium falciparum human malaria parasite genome is incompletely annotated and does not accurately represent the transcriptomic diversity of this species. To address this need, we performed long-read transcriptomic sequencing. 5' capped mRNA was enriched from samples of total and nuclear-fractionated RNA from intra-erythrocytic stages and converted to cDNA library. The cDNA libraries were sequenced on PacBio and Nanopore long-read platforms. 12,495 novel isoforms were annotated from the data. Alternative 5' and 3' ends represent the majority of isoform events among the novel isoforms, with retained introns being the next most common event. The majority of alternative 5' ends correspond to genomic regions with features similar to those of the reference transcript 5' ends. However, a minority of alternative 5' ends showed markedly different features, including locations within protein-coding regions. Alternative 3' ends showed similar features to the reference transcript 3' ends, notably adenine-rich termination signals. Distinguishing features of retained introns could not be observed, except for a tendency towards shorter length and greater GC content compared with spliced introns. Expression of antisense and retained intron isoforms was detected at different intra-erythrocytic stages, suggesting developmental regulation of these isoform events. To gain insights into the possible functions of the novel isoforms, their protein-coding potential was assessed. Variants of P. falciparum proteins and novel proteins encoded by alternative open reading frames suggest that P. falciparum has a greater proteomic repertoire than the current annotation. We provide a catalog of annotated transcripts and encoded alternative proteins to support further studies on gene and protein regulation of this pathogen.


Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Animales , Humanos , Transcriptoma , Plasmodium falciparum/genética , Parásitos/genética , Proteómica , Isoformas de Proteínas/genética , Empalme Alternativo , Malaria Falciparum/genética
5.
Malar J ; 10: 242, 2011 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-21849091

RESUMEN

BACKGROUND: Pyronaridine (PN) and chloroquine (CQ) are structurally related anti-malarial drugs with primarily the same mode of action. However, PN is effective against several multidrug-resistant lines of Plasmodium falciparum, including CQ resistant lines, suggestive of important operational differences between the two drugs. METHODS: Synchronized trophozoite stage cultures of P. falciparum strain K1 (CQ resistant) were exposed to 50% inhibitory concentrations (IC50) of PN and CQ, and parasites were harvested from culture after 4 and 24 hours exposure. Global transcriptional changes effected by drug treatment were investigated using DNA microarrays. RESULTS: After a 4 h drug exposure, PN induced a greater degree of transcriptional perturbation (61 differentially expressed features) than CQ (10 features). More genes were found to respond to 24 h treatments with both drugs, and 461 features were found to be significantly responsive to one or both drugs across all treatment conditions. Filtering was employed to remove features unrelated to primary drug action, specifically features representing genes developmentally regulated, secondary stress/death related processes and sexual stage development. The only significant gene ontologies represented among the 46 remaining features after filtering relate to host exported proteins from multi-gene families. CONCLUSIONS: The malaria parasite's molecular responses to PN and CQ treatment are similar in terms of the genes and pathways affected. However, PN appears to exert a more rapid response than CQ. The faster action of PN may explain why PN is more efficacious than CQ, particularly against CQ resistant isolates. In agreement with several other microarray studies of drug action on the parasite, it is not possible, however, to discern mechanism of drug action from the drug-responsive genes.


Asunto(s)
Antimaláricos/toxicidad , Perfilación de la Expresión Génica , Naftiridinas/toxicidad , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Estrés Fisiológico , Antimaláricos/farmacología , Humanos , Concentración 50 Inhibidora , Análisis por Micromatrices , Naftiridinas/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Factores de Tiempo
6.
PeerJ ; 9: e11983, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34527439

RESUMEN

BACKGROUND: The genome of the human malaria parasite Plasmodium falciparum is poorly annotated, in particular, the 5' capped ends of its mRNA transcripts. New approaches are needed to fully catalog P. falciparum transcripts for understanding gene function and regulation in this organism. METHODS: We developed a transcriptomic method based on next-generation sequencing of complementary DNA (cDNA) enriched for full-length fragments using eIF4E, a 5' cap-binding protein, and an unenriched control. DNA sequencing adapter was added after enrichment of full-length cDNA using two different ligation protocols. From the mapped sequence reads, enrichment scores were calculated for all transcribed nucleotides and used to calculate P-values of 5' capped nucleotide enrichment. Sensitivity and accuracy were increased by combining P-values from replicate experiments. Data were obtained for P. falciparum ring, trophozoite and schizont stages of intra-erythrocytic development. RESULTS: 5' capped nucleotide signals were mapped to 17,961 non-overlapping P. falciparum genomic intervals. Analysis of the dominant 5' capped nucleotide in these genomic intervals revealed the presence of two groups with distinctive epigenetic features and sequence patterns. A total of 4,512 transcripts were annotated as 5' capped based on the correspondence of 5' end with 5' capped nucleotide annotated from full-length cDNA data. DISCUSSION: The presence of two groups of 5' capped nucleotides suggests that alternative mechanisms may exist for producing 5' capped transcript ends in P. falciparum. The 5' capped transcripts that are antisense, outside of, or partially overlapping coding regions may be important regulators of gene function in P. falciparum.

7.
ACS Med Chem Lett ; 9(12): 1235-1240, 2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30613332

RESUMEN

The S108N mutation of dihydrofolate reductase (DHFR) renders Plasmodium falciparum malaria parasites resistant to pyrimethamine through steric clash with the rigid side chain of the inhibitor. Inhibitors with flexible side chains can avoid this clash and retain effectiveness against the mutant. However, other mutations such as N108S reversion confer resistance to flexible inhibitors. We designed and synthesized hybrid inhibitors with two structural types in a single molecule, which are effective against both wild-type and multiple mutants of P. falciparum through their selective target binding, as demonstrated by X-ray crystallography. Furthermore, the hybrid inhibitors can forestall the emergence of new resistant mutants, as shown by selection of mutants resistant to hybrid compound BT1 from a diverse PfDHFR random mutant library expressed in a surrogate bacterial system. These results show that it is possible to develop effective antifolate antimalarials to which the range of parasite resistance mutations is greatly reduced.

8.
Int J Parasitol ; 46(1): 7-12, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26548960

RESUMEN

Accurate gene models are essential for understanding parasite biology. However, transcript structure information is lacking for most parasite genes. Here, we describe "Virtual Northern" analysis of the malaria parasite Plasmodium falciparum to address this issue. RNA-seq libraries were made from size-fractionated RNA. Transcript sizes for 3052 genes were inferred from the read counts in each library. The data show that for almost half of the transcripts, the combined untranslated regions are more than twice the length of the open reading frame. Furthermore, we identified novel polycistronic, or gene overlapping, transcripts that suggest revisions to current gene models are needed.


Asunto(s)
Plasmodium falciparum/genética , ARN Mensajero/genética , Secuencia de Bases , Northern Blotting/métodos , Biblioteca de Genes , Genes Sobrepuestos , Técnicas Genéticas , Humanos , Malaria Falciparum/parasitología , Sistemas de Lectura Abierta , ARN Protozoario/genética , ARN Protozoario/aislamiento & purificación , Análisis de Secuencia de ARN/métodos , Transcripción Genética
9.
Mol Biochem Parasitol ; 198(1): 1-10, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25447287

RESUMEN

The human malaria parasite Plasmodium falciparum employs intricate post-transcriptional regulatory mechanisms in different stages of its life cycle. Despite the importance of post-transcriptional regulation, key elements of these processes, namely RNA binding proteins (RBPs), are poorly characterized. In this study, the RNA binding properties of P. falciparum proteins were characterized including two putative members of the Bruno/CELF family of RBPs (PfCELF1 and PfCELF2), dihydrofolate reductase-thymidylate synthase (PfDHFR-TS), and adenosine deaminase (PfAda). RNA binding activity was tested using UV-crosslinking and electrophoretic mobility shift assays. PfCELF1 and PfDHFR-TS demonstrated RNA binding activity, whereas PfAda and PfCELF2 were RBP-negative. Intracellular protein localization of RBPs was studied using GFP-tagged transgenic parasite lines. PfCELF1 protein may shuttle between nucleus and cytoplasm, as shown by a predominantly nuclear PfCELF1 cell population and another predominantly cytoplasmic. In contrast, PfDHFR-TS protein is predominantly cytoplasmic. PfCELF1 may thus have several roles, including pre-mRNA processing. The mRNA targets of these P. falciparum proteins were investigated by ribonomics using DNA microarrays. A sequence motif similar to that recognized by CELF proteins in other species is common in the introns of target mRNAs identified for PfCELF1, suggesting that nuclear-localized PfCELF1 may regulate pre-mRNA splicing in P. falciparum, as has been found for CELF proteins in other species. In contrast, none or very few mRNA targets were found for the other proteins, suggesting that they do not have biologically relevant roles as RBPs in the asexual stages of P. falciparum.


Asunto(s)
Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas de Unión al ARN/genética , Secuencias de Aminoácidos , Secuencia de Bases , Humanos , Datos de Secuencia Molecular , Plasmodium falciparum/química , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Unión Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo
10.
PLoS One ; 8(8): e73783, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24023691

RESUMEN

Conventional reverse genetic approaches for study of Plasmodium malaria parasite gene function are limited, or not applicable. Hence, new inducible systems are needed. Here we describe a method to control P. falciparum gene expression in which target genes bearing a glmS ribozyme in the 3' untranslated region are efficiently knocked down in transgenic P. falciparum parasites in response to glucosamine inducer. Using reporter genes, we show that the glmS ribozyme cleaves reporter mRNA in vivo leading to reduction in mRNA expression following glucosamine treatment. Glucosamine-induced ribozyme activation led to efficient reduction of reporter protein, which could be rapidly reversed by removing the inducer. The glmS ribozyme was validated as a reverse-genetic tool by integration into the essential gene and antifolate drug target dihydrofolate reductase-thymidylate synthase (PfDHFR-TS). Glucosamine treatment of transgenic parasites led to rapid and efficient knockdown of PfDHFR-TS mRNA and protein. PfDHFR-TS knockdown led to a growth/arrest mutant phenotype and hypersensitivity to pyrimethamine. The glmS ribozyme may thus be a tool for study of essential genes in P. falciparum and other parasite species amenable to transfection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Plasmodium falciparum/genética , ARN Catalítico/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glucosamina/farmacología , Humanos , Complejos Multienzimáticos/genética , Fenotipo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Genética Inversa , Tetrahidrofolato Deshidrogenasa/genética , Timidilato Sintasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA