Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell ; 143(2): 313-24, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20946988

RESUMEN

c-Myc (Myc) is an important transcriptional regulator in embryonic stem (ES) cells, somatic cell reprogramming, and cancer. Here, we identify a Myc-centered regulatory network in ES cells by combining protein-protein and protein-DNA interaction studies and show that Myc interacts with the NuA4 complex, a regulator of ES cell identity. In combination with regulatory network information, we define three ES cell modules (Core, Polycomb, and Myc) and show that the modules are functionally separable, illustrating that the overall ES cell transcription program is composed of distinct units. With these modules as an analytical tool, we have reassessed the hypothesis linking an ES cell signature with cancer or cancer stem cells. We find that the Myc module, independent of the Core module, is active in various cancers and predicts cancer outcome. The apparent similarity of cancer and ES cell signatures reflects, in large part, the pervasive nature of Myc regulatory networks.


Asunto(s)
Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Neoplasias/genética , Proteínas Proto-Oncogénicas c-myc/genética , Acetilación , Animales , Línea Celular , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Factores de Transcripción/metabolismo , Transcripción Genética
2.
Mol Cell ; 45(3): 330-43, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22325351

RESUMEN

Polycomb repressive complexes (PRCs) play key roles in developmental epigenetic regulation. Yet the mechanisms that target PRCs to specific loci in mammalian cells remain incompletely understood. In this study we show that Bmi1, a core component of Polycomb Repressive Complex 1 (PRC1), binds directly to the Runx1/CBFß transcription factor complex. Genome-wide studies in megakaryocytic cells demonstrate significant chromatin occupancy overlap between the PRC1 core component Ring1b and Runx1/CBFß and functional regulation of a considerable fraction of commonly bound genes. Bmi1/Ring1b and Runx1/CBFß deficiencies generate partial phenocopies of one another in vivo. We also show that Ring1b occupies key Runx1 binding sites in primary murine thymocytes and that this occurs via PRC2-independent mechanisms. Genetic depletion of Runx1 results in reduced Ring1b binding at these sites in vivo. These findings provide evidence for site-specific PRC1 chromatin recruitment by core binding transcription factors in mammalian cells.


Asunto(s)
Cromatina/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Subunidad beta del Factor de Unión al Sitio Principal/metabolismo , Proteínas Represoras/metabolismo , Animales , Línea Celular , Cromatografía de Afinidad , Análisis por Conglomerados , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad beta del Factor de Unión al Sitio Principal/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células Madre Hematopoyéticas/fisiología , Megacariocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complejo Represivo Polycomb 1 , Proteínas del Grupo Polycomb , Unión Proteica , Multimerización de Proteína , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/aislamiento & purificación , Linfocitos T/metabolismo , Timocitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Pez Cebra/embriología , Pez Cebra/genética
3.
Genes Dev ; 26(14): 1587-601, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22759635

RESUMEN

Hematopoietic development occurs in complex microenvironments and is influenced by key signaling events. Yet how these pathways communicate with master hematopoietic transcription factors to coordinate differentiation remains incompletely understood. The transcription factor RUNX1 plays essential roles in definitive hematopoietic stem cell (HSC) ontogeny, HSC maintenance, megakaryocyte (Mk) maturation, and lymphocyte differentiation. It is also the most frequent target of genetic alterations in human leukemia. Here, we report that RUNX1 is phosphorylated by Src family kinases (SFKs) and that this occurs on multiple tyrosine residues located within its negative regulatory DNA-binding and autoinhibitory domains. Retroviral transduction, chemical inhibitor, and genetic studies demonstrate a negative regulatory role of tyrosine phosphorylation on RUNX1 activity in Mk and CD8 T-cell differentiation. We also demonstrate that the nonreceptor tyrosine phosphatase Shp2 binds directly to RUNX1 and contributes to its dephosphorylation. Last, we show that RUNX1 tyrosine phosphorylation correlates with reduced GATA1 and enhanced SWI/SNF interactions. These findings link SFK and Shp2 signaling pathways to the regulation of RUNX1 activity in hematopoiesis via control of RUNX1 multiprotein complex assembly.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular/fisiología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Megacariocitos/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Transducción de Señal/fisiología , Familia-src Quinasas/metabolismo , Animales , Linfocitos T CD8-positivos/citología , Línea Celular , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Hematopoyesis/fisiología , Humanos , Megacariocitos/citología , Ratones , Ratones Transgénicos , Fosforilación/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Familia-src Quinasas/genética
5.
Blood ; 118(13): 3684-93, 2011 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-21828133

RESUMEN

The molecular mechanisms underlying erythroid-specific gene regulation remain incompletely understood. Closely spaced binding sites for GATA, NF-E2/maf, and CACCC interacting transcription factors play functionally important roles in globin and other erythroid-specific gene expression. We and others recently identified the CACCC-binding transcription factor ZBP-89 as a novel GATA-1 and NF-E2/mafK interacting partner. Here, we examined the role of ZBP-89 in human globin gene regulation and erythroid maturation using a primary CD34(+) cell ex vivo differentiation system. We show that ZBP-89 protein levels rise dramatically during human erythroid differentiation and that ZBP-89 occupies key cis-regulatory elements within the globin and other erythroid gene loci. ZBP-89 binding correlates strongly with RNA Pol II occupancy, active histone marks, and high-level gene expression. ZBP-89 physically associates with the histone acetyltransferases p300 and Gcn5/Trrap, and occupies common sites with Gcn5 within the human globin loci. Lentiviral short hairpin RNAs knockdown of ZBP-89 results in reduced Gcn5 occupancy, decreased acetylated histone 3 levels, lower globin and erythroid-specific gene expression, and impaired erythroid maturation. Addition of the histone deacetylase inhibitor valproic acid partially reverses the reduced globin gene expression. These findings reveal an activating role for ZBP-89 in human globin gene regulation and erythroid differentiation.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Unión al ADN/fisiología , Células Eritroides/metabolismo , Células Precursoras Eritroides/fisiología , Eritropoyesis/genética , Globinas/genética , Factores de Transcripción/fisiología , Células Cultivadas , Niño , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Inhibidores Enzimáticos/farmacología , Células Eritroides/efectos de los fármacos , Células Precursoras Eritroides/efectos de los fármacos , Células Precursoras Eritroides/metabolismo , Eritropoyesis/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Globinas/metabolismo , Humanos , Células K562 , Análisis por Micromatrices , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ácido Valproico/farmacología
6.
Clin Transl Immunology ; 11(12): e1435, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36583159

RESUMEN

Objective: Mechanisms underlying the anaphylactic reaction in humans are not fully understood. Here, we aimed at improving our understanding of anaphylaxis by investigating gene expression changes. Methods: Microarray data set GSE69063 was analysed, describing emergency department (ED) patients with severe anaphylaxis (n = 12), moderate anaphylaxis (n = 6), sepsis (n = 20) and trauma (n = 11). Samples were taken at ED presentation (T0) and 1 h later (T1). Healthy controls were age and sex matched to ED patient groups. Gene expression changes were determined using limma, and pathway analysis applied. Differentially expressed genes were validated in an independent cohort of anaphylaxis patients (n = 31) and matched healthy controls (n = 10), using quantitative reverse transcription-polymerase chain reaction. Results: Platelet aggregation was dysregulated in severe anaphylaxis at T0, but not in moderate anaphylaxis, sepsis or trauma. Dysregulation was not observed in patients who received adrenaline before T0. Seven genes (GATA1 (adjusted P-value = 5.57 × 10-4), TLN1 (adjusted P-value = 9.40 × 10-4), GP1BA (adjusted P-value = 2.15 × 10-2), SELP (adjusted P-value = 2.29 × 10-2), MPL (adjusted P-value = 1.20 × 10-2), F13A1 (adjusted P-value = 1.39 × 10-2) and SPARC (adjusted P-value = 4.06 × 10-2)) were significantly downregulated in severe anaphylaxis patients who did not receive adrenaline before ED arrival, compared with healthy controls. One gene (TLN1 (adjusted P-value = 1.29 × 10-2)) was significantly downregulated in moderate anaphylaxis patients who did not receive adrenaline before ED arrival, compared with healthy controls. Conclusion: Downregulation of genes involved in platelet aggregation and activation is a unique feature of the early anaphylactic reaction not previously reported and may be associated with reaction severity.

7.
Oncogenesis ; 11(1): 60, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207293

RESUMEN

The MYC proto-oncogene (MYC) is one of the most frequently overexpressed genes in breast cancer that drives cancer stem cell-like traits, resulting in aggressive disease progression and poor prognosis. In this study, we identified zinc finger transcription factor 148 (ZNF148, also called Zfp148 and ZBP-89) as a direct target of MYC. ZNF148 suppressed cell proliferation and migration and was transcriptionally repressed by MYC in breast cancer. Depletion of ZNF148 by short hairpin RNA (shRNA) and CRISPR/Cas9 increased triple-negative breast cancer (TNBC) cell proliferation and migration. Global transcriptome and chromatin occupancy analyses of ZNF148 revealed a central role in inhibiting cancer cell de-differentiation and migration. Mechanistically, we identified the Inhibitor of DNA binding 1 and 3 (ID1, ID3), drivers of cancer stemness and plasticity, as previously uncharacterized targets of transcriptional repression by ZNF148. Silencing of ZNF148 increased the stemness and tumorigenicity in TNBC cells. These findings uncover a previously unknown tumor suppressor role for ZNF148, and a transcriptional regulatory circuitry encompassing MYC, ZNF148, and ID1/3 in driving cancer stem cell traits in aggressive breast cancer.

8.
Sci Rep ; 11(1): 18003, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504167

RESUMEN

RNA-based therapeutics are emerging as innovative options for cancer treatment, with microRNAs being attractive targets for therapy development. We previously implicated microRNA-642a-5p (miR-642a-5p) as a tumor suppressor in prostate cancer (PCa), and here we characterize its mode of action, using 22Rv1 PCa cells. In an in vivo xenograft tumor model, miR-642a-5p induced a significant decrease in tumor growth, compared to negative control. Using RNA-Sequencing, we identified gene targets of miR-642a-5p which were enriched for gene sets controlling cell cycle; downregulated genes included Wilms Tumor 1 gene (WT1), NUAK1, RASSF3 and SKP2; and upregulated genes included IGFBP3 and GPS2. Analysis of PCa patient datasets showed a higher expression of WT1, NUAK1, RASSF3 and SKP2; and a lower expression of GPS2 and IGFBP3 in PCa tissue compared to non-malignant prostate tissue. We confirmed the prostatic oncogene WT1, as a direct target of miR-642a-5p, and treatment of 22Rv1 and LNCaP PCa cells with WT1 siRNA or a small molecule inhibitor of WT1 reduced cell proliferation. Taken together, these data provide insight into the molecular mechanisms by which miR-642a-5p acts as a tumor suppressor in PCa, an effect partially mediated by regulating genes involved in cell cycle control; and restoration of miR-642-5p in PCa could represent a novel therapeutic approach.


Asunto(s)
Ciclo Celular/genética , MicroARNs/genética , Próstata/metabolismo , Neoplasias de la Próstata/genética , Proteínas WT1/genética , Regiones no Traducidas 3' , Animales , Emparejamiento Base , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones SCID , MicroARNs/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/mortalidad , Neoplasias de la Próstata/patología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Transducción de Señal , Análisis de Supervivencia , Carga Tumoral , Proteínas WT1/antagonistas & inhibidores , Proteínas WT1/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Nat Commun ; 12(1): 1920, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33772001

RESUMEN

Adipogenesis associated Mth938 domain containing (AAMDC) represents an uncharacterized oncogene amplified in aggressive estrogen receptor-positive breast cancers. We uncover that AAMDC regulates the expression of several metabolic enzymes involved in the one-carbon folate and methionine cycles, and lipid metabolism. We show that AAMDC controls PI3K-AKT-mTOR signaling, regulating the translation of ATF4 and MYC and modulating the transcriptional activity of AAMDC-dependent promoters. High AAMDC expression is associated with sensitization to dactolisib and everolimus, and these PI3K-mTOR inhibitors exhibit synergistic interactions with anti-estrogens in IntClust2 models. Ectopic AAMDC expression is sufficient to activate AKT signaling, resulting in estrogen-independent tumor growth. Thus, AAMDC-overexpressing tumors may be sensitive to PI3K-mTORC1 blockers in combination with anti-estrogens. Lastly, we provide evidence that AAMDC can interact with the RabGTPase-activating protein RabGAP1L, and that AAMDC, RabGAP1L, and Rab7a colocalize in endolysosomes. The discovery of the RabGAP1L-AAMDC assembly platform provides insights for the design of selective blockers to target malignancies having the AAMDC amplification.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Antineoplásicos/farmacología , Neoplasias de la Mama/genética , Proteínas de Ciclo Celular/genética , Everolimus/farmacología , Femenino , Proteínas Activadoras de GTPasa/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Imidazoles/farmacología , Proteínas del Tejido Nervioso/metabolismo , Oncogenes/genética , Unión Proteica , Quinolinas/farmacología , Receptores de Estrógenos/metabolismo , Transducción de Señal/efectos de los fármacos
10.
Cancer Cell ; 38(2): 263-278.e6, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32559496

RESUMEN

Signals driving aberrant self-renewal in the heterogeneous leukemia stem cell (LSC) pool determine aggressiveness of acute myeloid leukemia (AML). We report that a positive modulator of canonical WNT signaling pathway, RSPO-LGR4, upregulates key self-renewal genes and is essential for LSC self-renewal in a subset of AML. RSPO2/3 serve as stem cell growth factors to block differentiation and promote proliferation of primary AML patient blasts. RSPO receptor, LGR4, is epigenetically upregulated and works through cooperation with HOXA9, a poor prognostic predictor. Blocking the RSPO3-LGR4 interaction by clinical-grade anti-RSPO3 antibody (OMP-131R10/rosmantuzumab) impairs self-renewal and induces differentiation in AML patient-derived xenografts but does not affect normal hematopoietic stem cells, providing a therapeutic opportunity for HOXA9-dependent leukemia.


Asunto(s)
Leucemia Mieloide/genética , Células Madre Neoplásicas/metabolismo , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/genética , Trombospondinas/genética , Enfermedad Aguda , Animales , Anticuerpos Monoclonales/farmacología , Línea Celular Tumoral , Perfilación de la Expresión Génica/métodos , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Células HL-60 , Humanos , Células K562 , Estimación de Kaplan-Meier , Leucemia Mieloide/tratamiento farmacológico , Leucemia Mieloide/metabolismo , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Células Madre Neoplásicas/efectos de los fármacos , Receptores Acoplados a Proteínas G/inmunología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Células THP-1 , Trombospondinas/inmunología , Trombospondinas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
11.
Blood Adv ; 3(16): 2499-2511, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31455666

RESUMEN

Erythroid maturation requires the concerted action of a core set of transcription factors. We previously identified the Krüppel-type zinc finger transcription factor Zfp148 (also called ZBP-89) as an interacting partner of the master erythroid transcription factor GATA1. Here we report the conditional knockout of Zfp148 in mice. Global loss of Zfp148 results in perinatal lethality from nonhematologic causes. Selective Zfp148 loss within the hematopoietic system results in a mild microcytic and hypochromic anemia, mildly impaired erythroid maturation, and delayed recovery from phenylhydrazine-induced hemolysis. Based on the mild erythroid phenotype of these mice compared with GATA1-deficient mice, we hypothesized that additional factor(s) may complement Zfp148 function during erythropoiesis. We show that Zfp281 (also called ZBP-99), another member of the Zfp148 transcription factor family, is highly expressed in murine and human erythroid cells. Zfp281 knockdown by itself results in partial erythroid defects. However, combined deficiency of Zfp148 and Zfp281 causes a marked erythroid maturation block. Zfp281 physically associates with GATA1, occupies many common chromatin sites with GATA1 and Zfp148, and regulates a common set of genes required for erythroid cell differentiation. These findings uncover a previously unknown role for Zfp281 in erythroid development and suggest that it functionally overlaps with that of Zfp148 during erythropoiesis.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Células Eritroides/citología , Células Eritroides/metabolismo , Eritropoyesis/genética , Factores de Transcripción/genética , Animales , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Factor de Transcripción GATA1/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genotipo , Humanos , Ratones , Ratones Noqueados , Unión Proteica , Factores de Transcripción/metabolismo , gamma-Globinas/genética , gamma-Globinas/metabolismo
12.
Oncogene ; 38(1): 140-150, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30076412

RESUMEN

Overexpression of MYC oncogene is highly prevalent in many malignancies such as aggressive triple-negative breast cancers (TNBCs) and it is associated with very poor outcome. Despite decades of research, attempts to effectively inhibit MYC, particularly with small molecules, still remain challenging due to the featureless nature of its protein structure. Herein, we describe the engineering of the dominant-negative MYC peptide (OmoMYC) linked to a functional penetrating 'Phylomer' peptide (FPPa) as a therapeutic strategy to inhibit MYC in TNBC. We found FPPa-OmoMYC to be a potent inducer of apoptosis (with IC50 from 1-2 µM) in TNBC cells with negligible effects in non-tumorigenic cells. Transcriptome analysis of FPPa-OmoMYC-treated cells indicated that the fusion protein inhibited MYC-dependent networks, inducing dynamic changes in transcriptional, metabolic, and apoptotic processes. We demonstrated the efficacy of FPPa-OmoMYC in inhibiting breast cancer growth when injected orthotopically in TNBC allografts. Lastly, we identified strong pharmacological synergisms between FPPa-OmoMYC and chemotherapeutic agents. This study highlights a novel therapeutic approach to target highly aggressive and chemoresistant MYC-activated cancers.


Asunto(s)
Péptidos de Penetración Celular/farmacología , Terapia Molecular Dirigida/métodos , Proteínas de Neoplasias/antagonistas & inhibidores , Fragmentos de Péptidos/uso terapéutico , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/uso terapéutico , Proteínas Recombinantes de Fusión/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Secuencia de Aminoácidos , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Péptidos de Penetración Celular/administración & dosificación , Péptidos de Penetración Celular/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Femenino , Genes myc , Humanos , Concentración 50 Inhibidora , Leucina Zippers/genética , Ratones , Modelos Moleculares , Mutación , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/farmacocinética , Biblioteca de Péptidos , Conformación Proteica , Ingeniería de Proteínas , Proteínas Proto-Oncogénicas c-myc/administración & dosificación , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/farmacocinética , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/farmacocinética
13.
Leukemia ; 33(6): 1400-1410, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30622285

RESUMEN

Abnormal metabolism is a fundamental hallmark of cancer and represents a therapeutic opportunity, yet its regulation by oncogenes remains poorly understood. Here, we uncover that JMJD1C, a jumonji C (JmjC)-containing H3K9 demethylase, is a critical regulator of aberrant metabolic processes in homeobox A9 (HOXA9)-dependent acute myeloid leukemia (AML). JMJD1C overexpression increases in vivo cell proliferation and tumorigenicity through demethylase-independent upregulation of a glycolytic and oxidative program, which sustains leukemic cell bioenergetics and contributes to an aggressive AML phenotype in vivo. Targeting JMJD1C-mediated metabolism via pharmacologic inhibition of glycolysis and oxidative phosphorylation led to ATP depletion, induced necrosis/apoptosis and decreased tumor growth in vivo in leukemias co-expressing JMJD1C and HOXA9. The anti-metabolic therapy effectively diminished AML stem/progenitor cells and reduced tumor burden in a primary AML patient-derived xenograft. Our data establish a direct link between drug responses and endogenous expression of JMJD1C and HOXA9 in human AML cell line- and patient-derived xenografts. These findings demonstrate a previously unappreciated role for JMJD1C in counteracting adverse metabolic changes and retaining the metabolic integrity during tumorigenesis, which can be exploited therapeutically.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Glucólisis , Proteínas de Homeodominio/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Fosforilación Oxidativa , Oxidorreductasas N-Desmetilantes/metabolismo , Animales , Proteínas de Homeodominio/genética , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Leucemia Mieloide Aguda/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Oxidorreductasas N-Desmetilantes/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Nat Commun ; 5: 5490, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25405324

RESUMEN

Both transcriptional and epigenetic regulations are fundamental for the control of eukaryotic gene expression. Here we perform a compendium analysis of >200 large sequencing data sets to elucidate the regulatory logic of global gene expression programs in mouse embryonic stem (ES) cells. We define four major classes of DNA-binding proteins (Core, PRC, MYC and CTCF) based on their target co-occupancy, and discover reciprocal regulation between the MYC and PRC classes for the activity of nearly all genes under the control of the CpG island (CGI)-containing promoters. This CGI-dependent regulatory mode explains the functional segregation between CGI-containing and CGI-less genes during early development. By defining active enhancers based on the co-occupancy of the Core class, we further demonstrate their additive roles in CGI-containing gene expression and cell type-specific roles in CGI-less gene expression. Altogether, our analyses provide novel insights into previously unknown CGI-dependent global gene regulatory modes.


Asunto(s)
Islas de CpG/genética , Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Células Madre Embrionarias/citología , Regulación de la Expresión Génica/genética , Animales , Secuencia de Bases , Línea Celular , Proteínas de Unión al ADN/clasificación , Elementos de Facilitación Genéticos/genética , Genes Reguladores , Ratones , Proteínas del Grupo Polycomb/genética , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/genética , Análisis de Secuencia de ADN
15.
J Clin Invest ; 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23863621

RESUMEN

About 10% of Down syndrome (DS) infants are born with a transient myeloproliferative disorder (DS-TMD) that spontaneously resolves within the first few months of life. About 20%-30% of these infants subsequently develop acute megakaryoblastic leukemia (DS-AMKL). Somatic mutations leading to the exclusive production of a short GATA1 isoform (GATA1s) occur in all cases of DS-TMD and DS-AMKL. Mice engineered to exclusively produce GATA1s have marked megakaryocytic progenitor (MkP) hyperproliferation during early fetal liver (FL) hematopoiesis, but not during postnatal BM hematopoiesis, mirroring the spontaneous resolution of DS-TMD. The mechanisms that underlie these developmental stage-specific effects are incompletely understood. Here, we report a striking upregulation of type I IFN-responsive gene expression in prospectively isolated mouse BM- versus FL-derived MkPs. Exogenous IFN-α markedly reduced the hyperproliferation FL-derived MkPs of GATA1s mice in vitro. Conversely, deletion of the α/ß IFN receptor 1 (Ifnar1) gene or injection of neutralizing IFN-α/ß antibodies increased the proliferation of BM-derived MkPs of GATA1s mice beyond the initial postnatal period. We also found that these differences existed in human FL versus BM megakaryocytes and that primary DS-TMD cells expressed type I IFN-responsive genes. We propose that increased type I IFN signaling contributes to the developmental stage-specific effects of GATA1s and possibly the spontaneous resolution of DS-TMD.

16.
Mol Cell Biol ; 29(15): 4103-15, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19470763

RESUMEN

The transcription factor RUNX-1 plays a key role in megakaryocyte differentiation and is mutated in cases of myelodysplastic syndrome and leukemia. In this study, we purified RUNX-1-containing multiprotein complexes from phorbol ester-induced L8057 murine megakaryoblastic cells and identified the ets transcription factor FLI-1 as a novel in vivo-associated factor. The interaction occurs via direct protein-protein interactions and results in synergistic transcriptional activation of the c-mpl promoter. Interestingly, the interaction fails to occur in uninduced cells. Gel filtration chromatography confirms the differentiation-dependent binding and shows that it correlates with the assembly of a complex also containing the key megakaryocyte transcription factors GATA-1 and Friend of GATA-1 (FOG-1). Phosphorylation analysis of FLI-1 with uninduced versus induced L8057 cells suggests the loss of phosphorylation at serine 10 in the induced state. Substitution of Ser10 with the phosphorylation mimic aspartic acid selectively impairs RUNX-1 binding, abrogates transcriptional synergy with RUNX-1, and dominantly inhibits primary fetal liver megakaryocyte differentiation in vitro. Conversely, substitution with alanine, which blocks phosphorylation, augments differentiation of primary megakaryocytes. We propose that dephosphorylation of FLI-1 is a key event in the transcriptional regulation of megakaryocyte maturation. These findings have implications for other cell types where interactions between runx and ets family proteins occur.


Asunto(s)
Diferenciación Celular/fisiología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Megacariocitos/metabolismo , Proteína Proto-Oncogénica c-fli-1/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular , Células Cultivadas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Electroforesis en Gel de Poliacrilamida , Expresión Génica , Humanos , Hígado/citología , Hígado/embriología , Megacariocitos/citología , Megacariocitos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Mutación , Fosforilación/efectos de los fármacos , Unión Proteica , Mapeo de Interacción de Proteínas , Proteína Proto-Oncogénica c-fli-1/genética , Serina/genética , Serina/metabolismo , Acetato de Tetradecanoilforbol/farmacología
17.
Mol Cell Biol ; 28(8): 2675-89, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18250154

RESUMEN

A complete understanding of the transcriptional regulation of developmental lineages requires that all relevant factors be identified. Here, we have taken a proteomic approach to identify novel proteins associated with GATA-1, a lineage-restricted zinc finger transcription factor required for terminal erythroid and megakaryocytic maturation. We identify the Krüppel-type zinc finger transcription factor ZBP-89 as being a component of multiprotein complexes involving GATA-1 and its essential cofactor Friend of GATA-1 (FOG-1). Using chromatin immunoprecipitation assays, we show that GATA-1 and ZBP-89 cooccupy cis-regulatory elements of certain erythroid and megakaryocyte-specific genes, including an enhancer of the GATA-1 gene itself. Loss-of-function studies in zebrafish and mice demonstrate an in vivo requirement for ZBP-89 in megakaryopoiesis and definitive erythropoiesis but not primitive erythropoiesis, phenocopying aspects of FOG-1- and GATA-1-deficient animals. These findings identify ZBP-89 as being a novel transcription factor involved in erythroid and megakaryocytic development and suggest that it serves a cooperative function with GATA-1 and/or FOG-1 in a developmental stage-specific manner.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Células Eritroides/metabolismo , Factor de Transcripción GATA1/metabolismo , Megacariocitos/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Eritroides/citología , Factor de Transcripción GATA1/química , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/aislamiento & purificación , Megacariocitos/citología , Ratones , Datos de Secuencia Molecular , Ploidias , Unión Proteica , Ratas , Factores de Transcripción/genética , Factores de Transcripción/aislamiento & purificación , Pez Cebra , Proteínas de Pez Cebra/genética
18.
Mol Cell Proteomics ; 1(6): 472-8, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12169687

RESUMEN

Transcription factors lie at the center of gene regulation, and their identification is crucial to the understanding of transcription and gene expression. Traditionally, the isolation and identification of transcription factors has been a long and laborious task. We present here a novel method for the identification of DNA-binding proteins seen in electrophoretic mobility shift assay (EMSA) using the power of two-dimensional electrophoresis coupled with mass spectrometry. By coupling SDS-PAGE and isoelectric focusing to EMSA, the molecular mass and pI of a protein complex seen in EMSA were estimated. Candidate proteins were then identified on a two-dimensional array at the predetermined pI and molecular mass coordinates and identified by mass spectrometry. We show here the successful isolation of a functionally relevant transcription factor and validate the identity through EMSA supershift analysis.


Asunto(s)
Proteínas de Unión al ADN/análisis , Factores de Transcripción/análisis , Unión Competitiva , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Electroforesis en Gel Bidimensional , Ensayo de Cambio de Movilidad Electroforética , Humanos , Focalización Isoeléctrica/métodos , Punto Isoeléctrico , Células Jurkat , Proteómica , Sensibilidad y Especificidad , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA