Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 134(1): 175-87, 2008 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-18614020

RESUMEN

The brain produces two brain-derived neurotrophic factor (BDNF) transcripts, with either short or long 3' untranslated regions (3' UTRs). The physiological significance of the two forms of mRNAs encoding the same protein is unknown. Here, we show that the short and long 3' UTR BDNF mRNAs are involved in different cellular functions. The short 3' UTR mRNAs are restricted to somata, whereas the long 3' UTR mRNAs are also localized in dendrites. In a mouse mutant where the long 3' UTR is truncated, dendritic targeting of BDNF mRNAs is impaired. There is little BDNF in hippocampal dendrites despite normal levels of total BDNF protein. This mutant exhibits deficits in pruning and enlargement of dendritic spines, as well as selective impairment in long-term potentiation in dendrites, but not somata, of hippocampal neurons. These results provide insights into local and dendritic actions of BDNF and reveal a mechanism for differential regulation of subcellular functions of proteins.


Asunto(s)
Regiones no Traducidas 3'/análisis , Regiones no Traducidas 3'/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo , Animales , Dendritas/química , Ratones , Ratones Endogámicos C57BL , Neuronas/química , Neuronas/citología , Poliadenilación , Biosíntesis de Proteínas , Receptor trkB/análisis
2.
J Neurosci ; 35(1): 396-408, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25568131

RESUMEN

Fragile X syndrome (FXS) is the leading cause of both intellectual disability and autism resulting from a single gene mutation. Previously, we characterized cognitive impairments and brain structural defects in a Drosophila model of FXS and demonstrated that these impairments were rescued by treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium. A well-documented biochemical defect observed in fly and mouse FXS models and FXS patients is low cAMP levels. cAMP levels can be regulated by mGluR signaling. Herein, we demonstrate PDE-4 inhibition as a therapeutic strategy to ameliorate memory impairments and brain structural defects in the Drosophila model of fragile X. Furthermore, we examine the effects of PDE-4 inhibition by pharmacologic treatment in the fragile X mouse model. We demonstrate that acute inhibition of PDE-4 by pharmacologic treatment in hippocampal slices rescues the enhanced mGluR-dependent LTD phenotype observed in FXS mice. Additionally, we find that chronic treatment of FXS model mice, in adulthood, also restores the level of mGluR-dependent LTD to that observed in wild-type animals. Translating the findings of successful pharmacologic intervention from the Drosophila model into the mouse model of FXS is an important advance, in that this identifies and validates PDE-4 inhibition as potential therapeutic intervention for the treatment of individuals afflicted with FXS.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Modelos Animales de Enfermedad , Síndrome del Cromosoma X Frágil/enzimología , Plasticidad Neuronal/fisiología , Inhibidores de Fosfodiesterasa 4/farmacología , Animales , Animales Modificados Genéticamente , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Drosophila , Femenino , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Masculino , Ratones , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Inhibidores de Fosfodiesterasa 4/uso terapéutico
3.
Proc Natl Acad Sci U S A ; 110(37): 15103-8, 2013 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-23980178

RESUMEN

Activity-dependent gene transcription, including that of the brain-derived neurotrophic factor (Bdnf) gene, has been implicated in various cognitive functions. We previously demonstrated that mutant mice with selective disruption of activity-dependent BDNF expression (BDNF-KIV mice) exhibit deficits in GABA-mediated inhibition in the prefrontal cortex (PFC). Here, we show that disruption of activity-dependent BDNF expression impairs BDNF-dependent late-phase long-term potentiation (L-LTP) in CA1, a site of hippocampal output to the PFC. Interestingly, early-phase LTP and conventional L-LTP induced by strong tetanic stimulation were completely normal in BDNF-KIV mice. In parallel, attenuation of activity-dependent BDNF expression significantly impairs spatial memory reversal and contextual memory extinction, two executive functions that require intact hippocampal-PFC circuitry. In contrast, spatial and contextual memory per se were not affected. Thus, activity-dependent BDNF expression in the hippocampus and PFC may contribute to cognitive and behavioral flexibility. These results suggest distinct roles for different forms of L-LTP and provide a link between activity-dependent BDNF expression and behavioral perseverance, a hallmark of several psychiatric disorders.


Asunto(s)
Conducta Animal/fisiología , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/fisiología , Región CA1 Hipocampal/fisiología , Corteza Prefrontal/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/deficiencia , Cognición/fisiología , Condicionamiento Psicológico/fisiología , Expresión Génica , Potenciación a Largo Plazo/genética , Potenciación a Largo Plazo/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Memoria a Corto Plazo/fisiología , Ratones , Ratones Noqueados , Ratones Mutantes
4.
Proc Natl Acad Sci U S A ; 106(14): 5942-7, 2009 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-19293383

RESUMEN

Transcription of Bdnf is controlled by multiple promoters, which drive expression of multiple transcripts encoding for the same protein. Promoter IV contributes significantly to activity-dependent brain-derived neurotrophic factor (BDNF) transcription. We have generated promoter IV mutant mice (BDNF-KIV) by inserting a GFP-STOP cassette within the Bdnf exon IV locus. This genetic manipulation results in disruption of promoter IV-mediated Bdnf expression. BDNF-KIV animals exhibited significant deficits in GABAergic interneurons in the prefrontal cortex (PFC), particularly those expressing parvalbumin, a subtype implicated in executive function and schizophrenia. Moreover, disruption of promoter IV-driven Bdnf transcription impaired inhibitory but not excitatory synaptic transmission recorded from layer V pyramidal neurons in the PFC. The attenuation of GABAergic inputs resulted in an aberrant appearance of spike-timing-dependent synaptic potentiation (STDP) in PFC slices derived from BDNF-KIV, but not wild-type littermates. These results demonstrate the importance of promoter IV-dependent Bdnf transcription in GABAergic function and reveal an unexpected regulation of STDP in the PFC by BDNF.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Corteza Prefrontal/fisiología , Regiones Promotoras Genéticas/fisiología , Transmisión Sináptica , Transcripción Genética , Animales , Potenciales Postsinápticos Excitadores , Potenciales Postsinápticos Inhibidores , Ratones , Ratones Mutantes , Potenciales Sinápticos
5.
Nat Neurosci ; 8(8): 1069-77, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16025106

RESUMEN

Pro- and mature brain-derived neurotrophic factor (BDNF) activate two distinct receptors: p75 neurotrophin receptor (p75(NTR)) and TrkB. Mature BDNF facilitates hippocampal synaptic potentiation through TrkB. Here we report that proBDNF, by activating p75(NTR), facilitates hippocampal long-term depression (LTD). Electron microscopy showed that p75(NTR) localized in dendritic spines, in addition to afferent terminals, of CA1 neurons. Deletion of p75(NTR) in mice selectively impaired the NMDA receptor-dependent LTD, without affecting other forms of synaptic plasticity. p75(NTR-/-) mice also showed a decrease in the expression of NR2B, an NMDA receptor subunit uniquely involved in LTD. Activation of p75(NTR) by proBDNF enhanced NR2B-dependent LTD and NR2B-mediated synaptic currents. These results show a crucial role for proBDNF-p75(NTR) signaling in LTD and its potential mechanism, and together with the finding that mature BDNF promotes synaptic potentiation, suggest a bidirectional regulation of synaptic plasticity by proBDNF and mature BDNF.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Precursores de Proteínas/farmacología , Receptores de Factor de Crecimiento Nervioso/metabolismo , Animales , Células Cultivadas , Dendritas/metabolismo , Dendritas/ultraestructura , Hipocampo/metabolismo , Hipocampo/ultraestructura , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Terminaciones Nerviosas/metabolismo , Terminaciones Nerviosas/ultraestructura , Receptor de Factor de Crecimiento Nervioso , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Factor de Crecimiento Nervioso/deficiencia , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
6.
Prog Brain Res ; 169: 251-66, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18394479

RESUMEN

Working memory is the ability to maintain representations of task-relevant information for short periods of time to guide subsequent actions or make decisions. Neurons of the prefrontal cortex exhibit persistent firing during the delay period of working memory tasks. Despite extensive studies, the mechanisms underlying this persistent neural activity remain largely obscure. The neurotransmitter systems of dopamine, NMDA, and GABA have been implicated, but further investigations are necessary to establish their precise roles and relationships. Recent research has suggested a new component: brain-derived neurotrophic factor (BDNF) and its high-affinity receptor, TrkB. We review the research on persistent activity and suggest that BDNF/TrkB signaling in a distinct class of interneurons plays an important role in organizing persistent neural activity at the single-neuron and network levels.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Memoria a Corto Plazo/fisiología , Neuronas/fisiología , Corteza Prefrontal/citología , Animales , Corteza Prefrontal/fisiología
7.
J Neurosci ; 26(43): 11208-19, 2006 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-17065460

RESUMEN

Integrins are a large family of cell adhesion receptors involved in a variety of cellular functions. To study their roles at central synapses, we used two cre recombinase lines to delete the Itgb1 beta1 integrin gene in forebrain excitatory neurons at different developmental stages. Removal of the beta1 integrins at an embryonic stage resulted in severe cortical lamination defects without affecting the cellular organization of pyramidal neurons in the CA3 and CA1 regions of the hippocampus. Whereas the hippocampal neurons underwent normal dendritic and synaptic differentiation, the adult synapses exhibited deficits in responses to high-frequency stimulation (HFS), as well as in long-term potentiation (LTP). Deletion of beta1 integrin at a later postnatal stage also impaired LTP but not synaptic responses to HFS. Thus, the beta1-class integrins appear to play distinct roles at different stages of synaptic development, critical for the proper maturation of readily releasable pool of vesicles during early development but essential for LTP throughout adult life.


Asunto(s)
Hipocampo/crecimiento & desarrollo , Integrina beta1/fisiología , Potenciación a Largo Plazo/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Hipocampo/embriología , Técnicas In Vitro , Integrina beta1/biosíntesis , Masculino , Ratones , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Vesículas Sinápticas/fisiología
8.
Neuroscientist ; 12(1): 43-56, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16394192

RESUMEN

Parvalbumin-positive interneurons, which include basket and chandelier cells, represent a unique class of interneurons. By innervating the soma and the axonal initial segment of pyramidal cells, these interneurons can elicit powerful control on the output of pyramidal cells and consequently are important for a number of physiological processes in the mammalian brain. Recent evidence indicates that neurotrophins regulate the development and functions of parvalbumin-positive interneurons. Disruption of neurotrophin-mediated regulation of interneurons is thought to contribute to the pathological processes underlying CNS dysfunction. This review brings together recently described roles of neurotrophins in migration, differentiation, synaptogenesis during development, and acute effects of neurotrophins in transmission at inhibitory synapses, Cl(-) homeostasis, and network activity of cortical interneurons. The authors also discuss the importance of neurotrophin regulation of GABAergic neurons in schizophrenia and epilepsy.


Asunto(s)
Corteza Cerebral/fisiología , Trastornos del Conocimiento/fisiopatología , Interneuronas/fisiología , Factores de Crecimiento Nervioso/fisiología , Animales , Enfermedades del Sistema Nervioso Central/fisiopatología , Corteza Cerebral/fisiopatología , Humanos , Red Nerviosa/fisiología , Ácido gamma-Aminobutírico/fisiología
9.
J Neurosci ; 23(4): 1125-32, 2003 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-12598600

RESUMEN

De novo protein synthesis and transcription are necessary for the expression of long-lasting synaptic potentiation [long-term potentiation (LTP)] in hippocampal area CA1 and for the consolidation of long-term memory. The stability of LTP and its longevity require macromolecular synthesis at later stages, but a specific role for early protein synthesis has not been identified. Using electrophysiological recording methods in mouse hippocampal slices, we show that multiple trains of high-frequency stimulation provide immediate synaptic immunity to depotentiation. This immunity to depotentiation is dependent on the amount of synaptic stimulation used to induce LTP, it is input specific, and it is prevented by inhibitors of protein synthesis. We propose that local translation mediates input-specific synaptic immunity against depotentiation. We also present evidence suggesting that, in addition to translation, products of transcription can provide cell-wide immunity to depotentiation via heterosynaptic transfer of synaptic immunity between distinct pathways in area CA1. Protein synthesis and transcription may importantly regulate long-term storage of information by conferring synaptic immunity to depotentiation at previously potentiated synapses.


Asunto(s)
Emparejamiento Cromosómico/fisiología , Hipocampo/metabolismo , Hipocampo/fisiología , Potenciación a Largo Plazo , Biosíntesis de Proteínas , Animales , Células Cultivadas , Dendritas/metabolismo , Estimulación Eléctrica , Femenino , Cinética , Aprendizaje , Memoria , Ratones , Ratones Endogámicos C57BL , Proteínas/genética , Transmisión Sináptica , Transcripción Genética
10.
Brain Res ; 1380: 106-19, 2011 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-21078304

RESUMEN

Fragile X syndrome is the leading single gene cause of intellectual disabilities. Treatment of a Drosophila model of Fragile X syndrome with metabotropic glutamate receptor (mGluR) antagonists or lithium rescues social and cognitive impairments. A hallmark feature of the Fragile X mouse model is enhanced mGluR-dependent long-term depression (LTD) at Schaffer collateral to CA1 pyramidal synapses of the hippocampus. Here we examine the effects of chronic treatment of Fragile X mice in vivo with lithium or a group II mGluR antagonist on mGluR-LTD at CA1 synapses. We find that long-term lithium treatment initiated during development (5-6 weeks of age) and continued throughout the lifetime of the Fragile X mice until 9-11 months of age restores normal mGluR-LTD. Additionally, chronic short-term treatment beginning in adult Fragile X mice (8 weeks of age) with either lithium or an mGluR antagonist is also able to restore normal mGluR-LTD. Translating the findings of successful pharmacologic intervention from the Drosophila model into the mouse model of Fragile X syndrome is an important advance, in that this identifies and validates these targets as potential therapeutic interventions for the treatment of individuals afflicted with Fragile X syndrome.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/farmacología , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Compuestos de Litio/farmacología , Plasticidad Neuronal/efectos de los fármacos , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Transmisión Sináptica/efectos de los fármacos , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Modelos Animales de Enfermedad , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/fisiopatología , Compuestos de Litio/uso terapéutico , Masculino , Ratones , Ratones Noqueados , Plasticidad Neuronal/genética , Receptores de Glutamato Metabotrópico/fisiología , Transmisión Sináptica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA