Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 294(2): 397-404, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30478172

RESUMEN

Homologous recombination (HR)-directed DNA double-strand break (DSB) repair enables template-directed DNA repair to maintain genomic stability. RAD51 recombinase (RAD51) is a critical component of HR and facilitates DNA strand exchange in DSB repair. We report here that treating triple-negative breast cancer (TNBC) cells with the fatty acid nitroalkene 10-nitro-octadec-9-enoic acid (OA-NO2) in combination with the antineoplastic DNA-damaging agents doxorubicin, cisplatin, olaparib, and γ-irradiation (IR) enhances the antiproliferative effects of these agents. OA-NO2 inhibited IR-induced RAD51 foci formation and enhanced H2A histone family member X (H2AX) phosphorylation in TNBC cells. Analyses of fluorescent DSB reporter activity with both static-flow cytometry and kinetic live-cell studies enabling temporal resolution of recombination revealed that OA-NO2 inhibits HR and not nonhomologous end joining (NHEJ). OA-NO2 alkylated Cys-319 in RAD51, and this alkylation depended on the Michael acceptor properties of OA-NO2 because nonnitrated and saturated nonelectrophilic analogs of OA-NO2, octadecanoic acid and 10-nitro-octadecanoic acid, did not react with Cys-319. Of note, OA-NO2 alkylation of RAD51 inhibited its binding to ssDNA. RAD51 Cys-319 resides within the SH3-binding site of ABL proto-oncogene 1, nonreceptor tyrosine kinase (ABL1), so we investigated the effect of OA-NO2-mediated Cys-319 alkylation on ABL1 binding and found that OA-NO2 inhibits RAD51-ABL1 complex formation both in vitro and in cell-based immunoprecipitation assays. The inhibition of the RAD51-ABL1 complex also suppressed downstream RAD51 Tyr-315 phosphorylation. In conclusion, RAD51 Cys-319 is a functionally significant site for adduction of soft electrophiles such as OA-NO2 and suggests further investigation of lipid electrophile-based combinational therapies for TNBC.


Asunto(s)
Antineoplásicos/administración & dosificación , Daño del ADN/efectos de los fármacos , Ácidos Grasos/administración & dosificación , Recombinasa Rad51/metabolismo , Neoplasias de la Mama Triple Negativas/enzimología , Neoplasias de la Mama Triple Negativas/fisiopatología , Alquilación , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Cisplatino/administración & dosificación , Reparación del ADN , Doxorrubicina/administración & dosificación , Quimioterapia Combinada , Ácidos Grasos/química , Humanos , Unión Proteica/efectos de los fármacos , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-abl/genética , Proteínas Proto-Oncogénicas c-abl/metabolismo , Recombinasa Rad51/química , Recombinasa Rad51/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
2.
J Lipid Res ; 60(2): 388-399, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30545956

RESUMEN

Electrophilic nitro-fatty acids [NO2-FAs (fatty acid nitroalkenes)] showed beneficial signaling actions in preclinical studies and safety in phase 1 clinical trials. A detailed description of the pharmacokinetics (PK) of NO2-FAs is complicated by the capability of electrophilic fatty acids to alkylate thiols reversibly and become esterified in various complex lipids, and the instability of the nitroalkene moiety during enzymatic and base hydrolysis. Herein, we report the mechanism and kinetics of absorption, metabolism, and distribution of the endogenously detectable and prototypical NO2-FA, 10-nitro-oleic acid (10-NO2-OA), in dogs after oral administration. Supported by HPLC-high-resolution-MS/MS analysis of synthetic and plasma-derived 10-NO2-OA-containing triacylglycerides (TAGs), we show that a key mechanism of NO2-FA distribution is an initial esterification into complex lipids. Quantitative analysis of plasma free and esterified lipid fractions confirmed time-dependent preferential incorporation of 10-NO2-OA into TAGs when compared with its principal metabolite, 10-nitro-stearic acid. Finally, new isomers of 10-NO2-OA were identified in vivo, and their electrophilic reactivity and metabolism characterized. Overall, we reveal that NO2-FAs display unique PK, with the principal mechanism of tissue distribution involving complex lipid esterification, which serves to shield the electrophilic character of this mediator from plasma and hepatic inactivation and thus permits efficient distribution to target organs.


Asunto(s)
Alquenos/química , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Nitrocompuestos/química , Animales , Transporte Biológico , Perros , Transporte de Electrón , Esterificación , Ácidos Grasos/sangre , Ácidos Grasos/farmacocinética , Concentración de Iones de Hidrógeno , Isomerismo , Masculino , Distribución Tisular
3.
J Biol Chem ; 293(4): 1120-1137, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29158255

RESUMEN

Triple-negative breast cancer (TNBC) comprises ∼20% of all breast cancers and is the most aggressive mammary cancer subtype. Devoid of the estrogen and progesterone receptors, along with the receptor tyrosine kinase ERB2 (HER2), that define most mammary cancers, there are no targeted therapies for patients with TNBC. This, combined with a high metastatic rate and a lower 5-year survival rate than for other breast cancer phenotypes, means there is significant unmet need for new therapeutic strategies. Herein, the anti-neoplastic effects of the electrophilic fatty acid nitroalkene derivative, 10-nitro-octadec-9-enoic acid (nitro-oleic acid, NO2-OA), were investigated in multiple preclinical models of TNBC. NO2-OA reduced TNBC cell growth and viability in vitro, attenuated TNFα-induced TNBC cell migration and invasion, and inhibited the tumor growth of MDA-MB-231 TNBC cell xenografts in the mammary fat pads of female nude mice. The up-regulation of these aggressive tumor cell growth, migration, and invasion phenotypes is mediated in part by the constitutive activation of pro-inflammatory nuclear factor κB (NF-κB) signaling in TNBC. NO2-OA inhibited TNFα-induced NF-κB transcriptional activity in human TNBC cells and suppressed downstream NF-κB target gene expression, including the metastasis-related proteins intercellular adhesion molecule-1 and urokinase-type plasminogen activator. The mechanisms accounting for NF-κB signaling inhibition by NO2-OA in TNBC cells were multifaceted, as NO2-OA (a) inhibited the inhibitor of NF-κB subunit kinase ß phosphorylation and downstream inhibitor of NF-κB degradation, (b) alkylated the NF-κB RelA protein to prevent DNA binding, and (c) promoted RelA polyubiquitination and proteasomal degradation. Comparisons with non-tumorigenic human breast epithelial MCF-10A and MCF7 cells revealed that NO2-OA more selectively inhibited TNBC function. This was attributed to more facile mechanisms for maintaining redox homeostasis in normal breast epithelium, including a more favorable thiol/disulfide balance, greater extents of multidrug resistance protein-1 (MRP1) expression, and greater MRP1-mediated efflux of NO2-OA-glutathione conjugates. These observations reveal that electrophilic fatty acid nitroalkenes react with more alkylation-sensitive targets in TNBC cells to inhibit growth and viability.


Asunto(s)
Movimiento Celular , Ácidos Grasos/metabolismo , Transducción de Señal , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Supervivencia Celular , Ácidos Grasos/genética , Femenino , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Invasividad Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
4.
J Biol Chem ; 292(4): 1145-1159, 2017 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-27923813

RESUMEN

Nitroalkene fatty acids are formed in vivo and exert protective and anti-inflammatory effects via reversible Michael addition to thiol-containing proteins in key signaling pathways. Nitro-conjugated linoleic acid (NO2-CLA) is preferentially formed, constitutes the most abundant nitrated fatty acid in humans, and contains two carbons that could potentially react with thiols, modulating signaling actions and levels. In this work, we examined the reactions of NO2-CLA with low molecular weight thiols (glutathione, cysteine, homocysteine, cysteinylglycine, and ß-mercaptoethanol) and human serum albumin. Reactions followed reversible biphasic kinetics, consistent with the presence of two electrophilic centers in NO2-CLA located on the ß- and δ-carbons with respect to the nitro group. The differential reactivity was confirmed by computational modeling of the electronic structure. The rates (kon and koff) and equilibrium constants for both reactions were determined for different thiols. LC-UV-Visible and LC-MS analyses showed that the fast reaction corresponds to ß-adduct formation (the kinetic product), while the slow reaction corresponds to the formation of the δ-adduct (the thermodynamic product). The pH dependence of the rate constants, the correlation between intrinsic reactivity and thiol pKa, and the absence of deuterium solvent kinetic isotope effects suggested stepwise mechanisms with thiolate attack on NO2-CLA as rate-controlling step. Computational modeling supported the mechanism and revealed additional features of the transition states, anionic intermediates, and final neutral products. Importantly, the detection of cysteine-δ-adducts in human urine provided evidence for the biological relevance of this reaction. Finally, human serum albumin was found to bind NO2-CLA both non-covalently and to form covalent adducts at Cys-34, suggesting potential modes for systemic distribution. These results provide new insights into the chemical basis of NO2-CLA signaling actions.


Asunto(s)
Ácido Linoleico/química , Nitrocompuestos/química , Albúmina Sérica/química , Transducción de Señal , Compuestos de Sulfhidrilo/química , Humanos
5.
Tetrahedron Lett ; 59(39): 3524-3527, 2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31379396

RESUMEN

15-oxo-Lipoxin A4 (15-oxo- LXA4) has been identified as a natural metabolite of the fatty acid signaling mediator Lipoxin A4. Herein, we report a total synthesis of the methyl ester of 15-oxo-LXA4 to be used in investigations of potential electrophilic bioactivity of this metabolite. The methyl ester of 15-oxo-LXA4 was synthesized in a convergent 15 step (9 steps longest linear) sequence starting from 1-octyn-3-ol and 2-deoxy-D-ribose with Sonogashira and Suzuki cross-couplings of a MIDA boronate as key steps.

6.
J Lipid Res ; 58(2): 375-385, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27913584

RESUMEN

Electrophilic nitro-FAs (NO2-FAs) promote adaptive and anti-inflammatory cell signaling responses as a result of an electrophilic character that supports posttranslational protein modifications. A unique pharmacokinetic profile is expected for NO2-FAs because of an ability to undergo reversible reactions including Michael addition with cysteine-containing proteins and esterification into complex lipids. Herein, we report via quantitative whole-body autoradiography analysis of rats gavaged with radiolabeled 10-nitro-[14C]oleic acid, preferential accumulation in adipose tissue over 2 weeks. To better define the metabolism and incorporation of NO2-FAs and their metabolites in adipose tissue lipids, adipocyte cultures were supplemented with 10-nitro-oleic acid (10-NO2-OA), nitro-stearic acid, nitro-conjugated linoleic acid, and nitro-linolenic acid. Then, quantitative HPLC-MS/MS analysis was performed on adipocyte neutral and polar lipid fractions, both before and after acid hydrolysis of esterified FAs. NO2-FAs preferentially incorporated in monoacyl- and diacylglycerides, while reduced metabolites were highly enriched in triacylglycerides. This differential distribution profile was confirmed in vivo in the adipose tissue of NO2-OA-treated mice. This pattern of NO2-FA deposition lends new insight into the unique pharmacokinetics and pharmacologic actions that could be expected for this chemically-reactive class of endogenous signaling mediators and synthetic drug candidates.


Asunto(s)
Tejido Adiposo/metabolismo , Ácidos Grasos/metabolismo , Ácidos Oléicos/administración & dosificación , Ácidos Oléicos/metabolismo , Tejido Adiposo/química , Alquenos/química , Animales , Radioisótopos de Carbono/química , Cisteína/química , Esterificación , Ácidos Grasos/química , Ratones , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Ácidos Oléicos/química , Procesamiento Proteico-Postraduccional , Ratas , Transducción de Señal/efectos de los fármacos , Espectrometría de Masas en Tándem
7.
Biochim Biophys Acta ; 1860(11 Pt A): 2428-2437, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27431604

RESUMEN

BACKGROUND: Inflammatory-mediated pathological processes in the endothelium arise as a consequence of the dysregulation of vascular homeostasis. Of particular importance are mediators produced by stimulated monocytes/macrophages inducing activation of endothelial cells (ECs). This is manifested by excessive soluble pro-inflammatory mediator production and cell surface adhesion molecule expression. Nitro-fatty acids are endogenous products of metabolic and inflammatory reactions that display immuno-regulatory potential and may represent a novel therapeutic strategy to treat inflammatory diseases. The purpose of our study was to characterize the effects of nitro-oleic acid (OA-NO2) on inflammatory responses and the endothelial-mesenchymal transition (EndMT) in ECs that is a consequence of the altered healing phase of the immune response. METHODS: The effect of OA-NO2 on inflammatory responses and EndMT was determined in murine macrophages and murine and human ECs using Western blotting, ELISA, immunostaining, and functional assays. RESULTS: OA-NO2 limited the activation of macrophages and ECs by reducing pro-inflammatory cytokine production and adhesion molecule expression through its modulation of STAT, MAPK and NF-κB-regulated signaling. OA-NO2 also decreased transforming growth factor-ß-stimulated EndMT and pro-fibrotic phenotype of ECs. These effects are related to the downregulation of Smad2/3. CONCLUSIONS: The study shows the pleiotropic effect of OA-NO2 on regulating EC-macrophage interactions during the immune response and suggests a role for OA-NO2 in the regulation of vascular endothelial immune and fibrotic responses arising during chronic inflammation. GENERAL SIGNIFICANCE: These findings propose the OA-NO2 may be useful as a novel therapeutic agent for treatment of cardiovascular disorders associated with dysregulation of the endothelial immune response.


Asunto(s)
Endotelio Vascular/efectos de los fármacos , Transición Epitelial-Mesenquimal , Ácidos Oléicos/farmacología , Animales , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Humanos , Inflamación/metabolismo , Sistema de Señalización de MAP Quinasas , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , FN-kappa B/metabolismo , Factores de Transcripción STAT/metabolismo , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/farmacología
8.
Cardiovasc Drugs Ther ; 30(6): 579-586, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27858190

RESUMEN

RATIONALE: Pulmonary hypertension (PH) represents a serious health complication accompanied with hypoxic conditions, elevated levels of asymmetric dimethylarginine (ADMA), and overall dysfunction of pulmonary vascular endothelium. Since the prevention strategies for treatment of PH remain largely unknown, our study aimed to explore the effect of nitro-oleic acid (OA-NO2), an exemplary nitro-fatty acid (NO2-FA), in human pulmonary artery endothelial cells (HPAEC) under the influence of hypoxia or ADMA. METHODS: HPAEC were treated with OA-NO2 in the absence or presence of hypoxia and ADMA. The production of nitric oxide (NO) and interleukin-6 (IL-6) was monitored using the Griess method and ELISA, respectively. The expression or activation of different proteins (signal transducer and activator of transcription 3, STAT3; hypoxia inducible factor 1α, HIF-1α; endothelial nitric oxide synthase, eNOS; intercellular adhesion molecule-1, ICAM-1) was assessed by the Western blot technique. RESULTS: We discovered that OA-NO2 prevents development of endothelial dysfunction induced by either hypoxia or ADMA. OA-NO2 preserves normal cellular functions in HPAEC by increasing NO production and eNOS expression. Additionally, OA-NO2 inhibits IL-6 production as well as ICAM-1 expression, elevated by hypoxia and ADMA. Importantly, the effect of OA-NO2 is accompanied by prevention of STAT3 activation and HIF-1α stabilization. CONCLUSION: In summary, OA-NO2 eliminates the manifestation of hypoxia- and ADMA-mediated endothelial dysfunction in HPAEC via the STAT3/HIF-1α cascade. Importantly, our study is bringing a new perspective on molecular mechanisms of NO2-FAs action in pulmonary endothelial dysfunction, which represents a causal link in progression of PH. Graphical Abstract ᅟ.


Asunto(s)
Hipoxia de la Célula/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Ácidos Oléicos/farmacología , Arginina/análogos & derivados , Arginina/farmacología , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-6/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Arteria Pulmonar/citología , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo
9.
Am J Respir Cell Mol Biol ; 51(1): 155-62, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24521348

RESUMEN

Pulmonary arterial hypertension (PAH) is characterized by adverse remodeling of pulmonary arteries. Although the origin of the disease and its underlying pathophysiology remain incompletely understood, inflammation has been identified as a central mediator of disease progression. Oxidative inflammatory conditions support the formation of electrophilic fatty acid nitroalkene derivatives, which exert potent anti-inflammatory effects. The current study investigated the role of 10-nitro-oleic acid (OA-NO2) in modulating the pathophysiology of PAH in mice. Mice were kept for 28 days under normoxic or hypoxic conditions, and OA-NO2 was infused subcutaneously. Right ventricular systolic pressure (RVPsys) was determined, and right ventricular and lung tissue was analyzed. The effect of OA-NO2 on cultured pulmonary artery smooth muscle cells (PASMCs) and macrophages was also investigated. Changes in RVPsys revealed increased pulmonary hypertension in mice on hypoxia, which was significantly decreased by OA-NO2 administration. Right ventricular hypertrophy and fibrosis were also attenuated by OA-NO2 treatment. The infiltration of macrophages and the generation of reactive oxygen species were elevated in lung tissue of mice on hypoxia and were diminished by OA-NO2 treatment. Moreover, OA-NO2 decreased superoxide production of activated macrophages and PASMCs in vitro. Vascular structural remodeling was also limited by OA-NO2. In support of these findings, proliferation and activation of extracellular signal-regulated kinases 1/2 in cultured PASMCs was less pronounced on application of OA-NO2.Our results show that the oleic acid nitroalkene derivative OA-NO2 attenuates hypoxia-induced pulmonary hypertension in mice. Thus, OA-NO2 represents a potential therapeutic agent for the treatment of PAH.


Asunto(s)
Modelos Animales de Enfermedad , Hipertensión Pulmonar/prevención & control , Hipertrofia Ventricular Derecha/prevención & control , Hipoxia/fisiopatología , Inflamación/prevención & control , Ácidos Oléicos/uso terapéutico , Animales , Western Blotting , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Cromatografía Líquida de Alta Presión , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hipertensión Pulmonar Primaria Familiar , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/patología , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/patología , Inflamación/etiología , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Superóxidos/metabolismo
10.
J Biol Chem ; 288(35): 25626-25637, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-23878198

RESUMEN

Inflammation, characterized by the activation of both resident and infiltrated immune cells, is accompanied by increased production of oxidizing and nitrating species. Nitrogen dioxide, the proximal nitrating species formed under these conditions, reacts with unsaturated fatty acids to yield nitroalkene derivatives. These electrophilic products modulate protein function via post-translational modification of susceptible nucleophilic amino acids. Nitroalkenes react with Keap1 to instigate Nrf2 signaling, activate heat shock response gene expression, and inhibit NF-κB-mediated signaling, inducing net anti-inflammatory and tissue-protective metabolic responses. We report the purification and characterization of a NADPH-dependent liver enzyme that reduces the nitroalkene moiety of nitro-oleic acid, yielding the inactive product nitro-stearic acid. Prostaglandin reductase-1 (PtGR-1) was identified as a nitroalkene reductase by protein purification and proteomic studies. Kinetic measurements, inhibition studies, immunological and molecular biology approaches as well as clinical analyses confirmed this identification. Overexpression of PtGR-1 in HEK293T cells promoted nitroalkene metabolism to inactive nitroalkanes, an effect that abrogated the Nrf2-dependent induction of heme oxygenase-1 expression by nitro-oleic acid. These results situate PtGR-1 as a critical modulator of both the steady state levels and signaling activities of fatty acid nitroalkenes in vivo.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Hígado/metabolismo , Nitrocompuestos/metabolismo , Ácido Oléico/metabolismo , Transducción de Señal/fisiología , Ácidos Esteáricos/metabolismo , Oxidorreductasas de Alcohol/genética , Animales , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Células Hep G2 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Ácido Oléico/genética , Ratas
11.
J Org Chem ; 79(1): 25-33, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24350701

RESUMEN

Nitro-conjugated linoleic acids (NO2-cLA), endogenous nitrodiene lipids which act as inflammatory signaling mediators, were isolated and single isomers purified from the biomimetic acidic nitration products of conjugated linoleic acid (CLA). Structures were elucidated by means of detailed NMR and HPLC-MS/MS spectroscopic analysis and the relative double bond configurations assigned. Additional synthetic methods produced useful quantities and similar isomeric distributions of these unusual and reactive compounds for biological studies and isotopic standards, and the potential conversion of nitro-linoleic to nitro-conjugated linoleic acids was explored via a facile base-catalyzed isomerization. This represents one of the few descriptions of naturally occurring conjugated nitro dienes (in particular, 1-nitro 1,3-diene), an unusual and highly reactive motif with few biological examples extant.


Asunto(s)
Ácidos Linoleicos Conjugados/química , Lípidos/química , Nitrocompuestos/química , Biomimética , Cromatografía Líquida de Alta Presión , Espectroscopía de Resonancia Magnética , Espectrometría de Masas en Tándem
12.
Food Chem ; 437(Pt 1): 137767, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37879157

RESUMEN

Nitrated fatty acids are important anti-inflammatory and protective lipids formed in the gastric compartment, with conjugated linoleic acid (rumenic acid, RA, 9Z,11E-18:2) being the primary substrate for lipid nitration. The recently reported identification of nitrated rumelenic acid (NO2-RLA) in human urine has led to hypothesize that rumelenic acid (RLA, 9Z,11E,15Z-18:3) from dairy fat is responsible for the formation of NO2-RLA. To evaluate the source and mechanism of NO2-RLA formation, 15N labeled standards of NO2-RLA were synthesized and characterized. Afterward, milk fat with different RA and RLA levels was administered to mice in the presence of nitrite, and the appearance of nitrated fatty acids in plasma and urine followed. We confirmed the formation of NO2-RLA and defined the main metabolites in plasma, urine, and tissues. In conclusion, RLA obtained from dairy products is the main substrate for forming this novel electrophilic lipid reported to be present in human urine.


Asunto(s)
Ácidos Linoleicos Conjugados , Nitratos , Ratones , Humanos , Animales , Nitratos/química , Nitritos/metabolismo , Dióxido de Nitrógeno , Ácidos Grasos/química , Productos Lácteos , Ácidos Linolénicos
13.
bioRxiv ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38370667

RESUMEN

The enzymatic oxidation of arachidonic acid is proposed to yield trihydroxytetraene species (termed lipoxins) that resolve inflammation via ligand activation of the formyl peptide receptor, FPR2. While cell and murine models activate signaling responses to synthetic lipoxins, primarily 5S,6R,15S-trihydroxy-7E,9E,11Z,13E-eicosatetraenoic acid (lipoxin A4, LXA4), there are expanding concerns about the biological formation, detection and signaling mechanisms ascribed to LXA4 and related di- and tri-hydroxy ω-6 and ω-3 fatty acids. Herein, the generation and actions of LXA4 and its primary 15-oxo metabolite were assessed in control, LPS-activated and arachidonic acid supplemented RAW 264.7 macrophages. Despite protein expression of all enzymes required for LXA4 synthesis, both LXA4 and its 15-oxo-LXA4 metabolite were undetectable. Moreover, synthetic LXA4 and the membrane permeable 15-oxo-LXA4 methyl ester that is rapidly de-esterified to 15-oxo-LXA4, displayed no ligand activity for the putative LXA4 receptor FPR2, as opposed to the FPR2 ligand WKYMVm. Alternatively, 15-oxo-LXA4, an electrophilic α,ß-unsaturated ketone, alkylates nucleophilic amino acids such as cysteine to modulate redox-sensitive transcriptional regulatory protein and enzyme function. 15-oxo-LXA4 activated nuclear factor (erythroid related factor 2)-like 2 (Nrf2)-regulated gene expression of anti-inflammatory and repair genes and inhibited nuclear factor (NF)-κB-regulated pro-inflammatory mediator expression. LXA4 did not impact these macrophage anti-inflammatory and repair responses. In summary, these data show an absence of macrophage LXA4 formation and receptor-mediated signaling actions. Rather, if LXA4 were present in sufficient concentrations, this, and other more abundant mono- and poly-hydroxylated unsaturated fatty acids can be readily oxidized to electrophilic α,ß-unsaturated ketone products that modulate the redox-sensitive cysteine proteome via G-protein coupled receptor-independent mechanisms.

14.
J Lipid Res ; 54(7): 1998-2009, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23620137

RESUMEN

The oxidation and nitration of unsaturated fatty acids transforms cell membrane and lipoprotein constituents into mediators that regulate signal transduction. The formation of 9-NO2-octadeca-9,11-dienoic acid and 12-NO2-octadeca-9,11-dienoic acid stems from peroxynitrite- and myeloperoxidase-derived nitrogen dioxide reactions as well as secondary to nitrite disproportionation under the acidic conditions of digestion. Broad anti-inflammatory and tissue-protective responses are mediated by nitro-fatty acids. It is now shown that electrophilic fatty acid nitroalkenes are present in the urine of healthy human volunteers (9.9 ± 4.0 pmol/mg creatinine); along with electrophilic 16- and 14-carbon nitroalkenyl ß-oxidation metabolites. High resolution mass determinations and coelution with isotopically-labeled metabolites support renal excretion of cysteine-nitroalkene conjugates. These products of Michael addition are in equilibrium with the free nitroalkene pool in urine and are displaced by thiol reaction with mercury chloride. This reaction increases the level of free nitroalkene fraction >10-fold and displays a K(D) of 7.5 × 10(-6) M. In aggregate, the data indicates that formation of Michael adducts by electrophilic fatty acids is favored under biological conditions and that reversal of these addition reactions is critical for detecting both parent nitroalkenes and their metabolites. The measurement of this class of mediators can constitute a sensitive noninvasive index of metabolic and inflammatory status.


Asunto(s)
Ácidos Grasos/orina , Nitrocompuestos/orina , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Voluntarios Sanos , Humanos , Estructura Molecular , Nitrocompuestos/química , Nitrocompuestos/metabolismo
15.
J Biol Chem ; 287(53): 44071-82, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23144452

RESUMEN

The oxidation and nitration of unsaturated fatty acids by oxides of nitrogen yield electrophilic derivatives that can modulate protein function via post-translational protein modifications. The biological mechanisms accounting for fatty acid nitration and the specific structural characteristics of products remain to be defined. Herein, conjugated linoleic acid (CLA) is identified as the primary endogenous substrate for fatty acid nitration in vitro and in vivo, yielding up to 10(5) greater extent of nitration products as compared with bis-allylic linoleic acid. Multiple enzymatic and cellular mechanisms account for CLA nitration, including reactions catalyzed by mitochondria, activated macrophages, and gastric acidification. Nitroalkene derivatives of CLA and their metabolites are detected in the plasma of healthy humans and are increased in tissues undergoing episodes of ischemia reperfusion. Dietary CLA and nitrite supplementation in rodents elevates NO(2)-CLA levels in plasma, urine, and tissues, which in turn induces heme oxygenase-1 (HO-1) expression in the colonic epithelium. These results affirm that metabolic and inflammatory reactions yield electrophilic products that can modulate adaptive cell signaling mechanisms.


Asunto(s)
Ácidos Grasos/metabolismo , Ácido Linoleico/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Animales , Línea Celular , Humanos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Transducción de Señal
16.
bioRxiv ; 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37645906

RESUMEN

Nitro fatty acids (NO 2 -FAs) are endogenously generated lipid signaling mediators from metabolic and inflammatory reactions between conjugated diene fatty acids and nitric oxide or nitrite-derived reactive species. NO 2 -FAs undergo reversible Michael addition with hyperreactive protein cysteine thiolates to induce posttranslational protein modifications that can impact protein function. Herein, we report a novel mechanism of action of natural and non-natural nitroalkenes structurally similar to ( E ) 10-nitro-octadec-9-enoic acid (CP-6), recently de-risked by preclinical Investigational New Drug-enabling studies and Phase 1 and Phase 2 clinical trials and found to induce DNA damage in a TNBC xenograft by inhibiting homologous-recombination (HR)-mediated repair of DNA double-strand breaks (DSB). CP-6 specifically targets Cys319, essential in RAD51-controlled HR-mediated DNA DSB repair in cells. A nitroalkene library screen identified two structurally different nitroalkenes, a non-natural fatty acid [( E ) 8-nitro- nonadec-7-enoic acid (CP-8)] and a dicarboxylate ester [dimethyl ( E )nitro-oct-4-enedioate (CP- 23)] superior to CP-6 in TNBC cells killing, synergism with three different inhibitors of the poly ADP-ribose polymerase (PARP) and γ-IR. CP-8 and CP-23 effectively inhibited γ-IR-induced RAD51 foci formation and HR in a GFP-reported assay but did not affect benign human epithelial cells or cell cycle phases. In vivo, CP-8 and CP-23's efficacies diverged as only CP-8 showed promising anticancer activities alone and combined with the PARP inhibitor talazoparib in an HR-proficient TNBC mouse model. As preliminary preclinical toxicology analysis also suggests CP-8 as safe, our data endorse CP-8 as a novel anticancer molecule for treating cancers sensitive to homologous recombination-mediated DNA repair inhibitors.

17.
Redox Biol ; 66: 102856, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37633047

RESUMEN

Nitro fatty acids (NO2-FAs) are endogenously generated lipid signaling mediators from metabolic and inflammatory reactions between conjugated diene fatty acids and nitric oxide or nitrite-derived reactive species. NO2-FAs undergo reversible Michael addition with hyperreactive protein cysteine thiolates to induce posttranslational protein modifications that can impact protein function. Herein, we report a novel mechanism of action of natural and non-natural nitroalkenes structurally similar to (E) 10-nitro-octadec-9-enoic acid (CP-6), recently de-risked by preclinical Investigational New Drug-enabling studies and Phase 1 and Phase 2 clinical trials and found to induce DNA damage in a TNBC xenograft by inhibiting homologous-recombination (HR)-mediated repair of DNA double-strand breaks (DSB). CP-6 specifically targets Cys319, essential in RAD51-controlled HR-mediated DNA DSB repair in cells. A nitroalkene library screen identified two structurally different nitroalkenes, a non-natural fatty acid [(E) 8-nitro-nonadec-7-enoic acid (CP-8)] and a dicarboxylate ester [dimethyl (E)nitro-oct-4-enedioate (CP-23)] superior to CP-6 in TNBC cells killing, synergism with three different inhibitors of the poly ADP-ribose polymerase (PARP) and γ-IR. CP-8 and CP-23 effectively inhibited γ-IR-induced RAD51 foci formation and HR in a GFP-reported assay but did not affect benign human epithelial cells or cell cycle phases. In vivo, CP-8 and CP-23's efficacies diverged as only CP-8 showed promising anticancer activities alone and combined with the PARP inhibitor talazoparib in an HR-proficient TNBC mouse model. As preliminary preclinical toxicology analysis also suggests CP-8 as safe, our data endorse CP-8 as a novel anticancer molecule for treating cancers sensitive to homologous recombination-mediated DNA repair inhibitors.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Animales , Ratones , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Dióxido de Nitrógeno , Recombinación Homóloga , Apoptosis , Alquenos , ADN , Recombinasa Rad51
18.
J Biol Chem ; 286(16): 14019-27, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21357422

RESUMEN

Nitro-fatty acids (NO(2)-FAs) are electrophilic signaling mediators formed in vivo via nitric oxide (NO)- and nitrite (NO(2)(-))-dependent reactions. Nitro-fatty acids modulate signaling cascades via reversible covalent post-translational modification of nucleophilic amino acids in regulatory proteins and enzymes, thus altering downstream signaling events, such as Keap1-Nrf2-antioxidant response element (ARE)-regulated gene expression. In this study, we investigate the molecular mechanisms by which 9- and 10-nitro-octadec-9-enoic acid (OA-NO(2)) activate the transcription factor Nrf2, focusing on the post-translational modifications of cysteines in the Nrf2 inhibitor Keap1 by nitroalkylation and its downstream responses. Of the two regioisomers, 9-nitro-octadec-9-enoic acid was a more potent ARE inducer than 10-nitro-octadec-9-enoic acid. The most OA-NO(2)-reactive Cys residues in Keap1 were Cys(38), Cys(226), Cys(257), Cys(273), Cys(288), and Cys(489). Of these, Cys(273) and Cys(288) accounted for ∼50% of OA-NO(2) reactions in a cellular milieu. Notably, Cys(151) was among the least OA-NO(2)-reactive of the Keap1 Cys residues, with mutation of Cys(151) having no effect on net OA-NO(2) reaction with Keap1 or on ARE activation. Unlike many other Nrf2-activating electrophiles, OA-NO(2) enhanced rather than diminished the binding between Keap1 and the Cul3 subunit of the E3 ligase for Nrf2. OA-NO(2) can therefore be categorized as a Cys(151)-independent Nrf2 activator, which in turn can influence the pattern of gene expression and therapeutic actions of nitroalkenes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Cisteína/química , Proteínas del Citoesqueleto/química , Ácidos Grasos/química , Péptidos y Proteínas de Señalización Intracelular/química , Factor 2 Relacionado con NF-E2/química , Animales , Cromatografía Liquida/métodos , Regulación de la Expresión Génica , Humanos , Proteína 1 Asociada A ECH Tipo Kelch , Ácidos Linoleicos/química , Espectrometría de Masas/métodos , Ratones , Mutación , Nitrocompuestos/química , Ácidos Oléicos/química , Procesamiento Proteico-Postraduccional , Transducción de Señal , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/química
19.
Nat Chem Biol ; 6(6): 433-41, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20436486

RESUMEN

Electrophilic fatty acids are generated during inflammation by non-enzymatic reactions and can modulate inflammatory responses. We used a new mass spectrometry-based electrophile capture strategy to reveal the formation of electrophilic oxo-derivatives (EFOX) from the omega-3 fatty acids docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). These EFOX were generated by a cyclooxygenase-2 (COX-2)-catalyzed mechanism in activated macrophages. Modulation of COX-2 activity by aspirin increased the rate of EFOX production and their intracellular levels. Owing to their electrophilic nature, EFOX adducted to cysteine and histidine residues of proteins and activated Nrf2-dependent anti-oxidant gene expression. We confirmed the anti-inflammatory nature of DHA- and DPA-derived EFOX by showing that they can act as peroxisome proliferator-activated receptor-gamma (PPAR gamma) agonists and inhibit pro-inflammatory cytokine and nitric oxide production, all within biological concentration ranges. These data support the idea that EFOX are signaling mediators that transduce the beneficial clinical effects of omega-3 fatty acids, COX-2 and aspirin.


Asunto(s)
Antiinflamatorios/síntesis química , Ciclooxigenasa 2/metabolismo , Ácidos Grasos Omega-3/metabolismo , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Borohidruros/farmacología , Línea Celular , Membrana Celular/metabolismo , Ácidos Docosahexaenoicos/química , Ácidos Docosahexaenoicos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Insaturados/farmacología , Glutatión/metabolismo , Humanos , Hidroxilación , Interleucina-10/genética , Interleucina-6/genética , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , PPAR gamma/metabolismo , PPAR gamma/farmacología
20.
Sci Adv ; 8(26): eabm9138, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35767602

RESUMEN

The up-regulation of kynurenine metabolism induces immunomodulatory responses via incompletely understood mechanisms. We report that increases in cellular and systemic kynurenine levels yield the electrophilic derivative kynurenine-carboxyketoalkene (Kyn-CKA), as evidenced by the accumulation of thiol conjugates and saturated metabolites. Kyn-CKA induces NFE2 like bZIP transcription factor 2- and aryl hydrocarbon receptor-regulated genes and inhibits nuclear factor κB- and NLR family pyrin domain containing 3-dependent proinflammatory signaling. Sickle cell disease (SCD) is a hereditary hemolytic condition characterized by basal inflammation and recurrent vaso-occlusive crises. Both transgenic SCD mice and patients with SCD exhibit increased kynurenine and Kyn-CKA metabolite levels. Plasma hemin and kynurenine concentrations are positively correlated, indicating that Kyn-CKA synthesis in SCD is up-regulated during pathogenic vascular stress. Administration of Kyn-CKA abrogated pulmonary microvasculature occlusion in SCD mice, an important factor in lung injury development. These findings demonstrate that the up-regulation of kynurenine synthesis and its metabolism to Kyn-CKA is an adaptive response that attenuates inflammation and protects tissues.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA