Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Magn Reson Med ; 92(4): 1568-1583, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38767321

RESUMEN

PURPOSE: To improve the spatial resolution and repeatability of a non-contrast MRI technique for simultaneous time resolved 3D angiography and perfusion imaging by developing an efficient 3D cone trajectory design. METHODS: A novel parameterized 3D cone trajectory design incorporating the 3D golden angle was integrated into 4D combined angiography and perfusion using radial imaging and arterial spin labeling (CAPRIA) to achieve higher spatial resolution and sampling efficiency for both dynamic angiography and perfusion imaging with flexible spatiotemporal resolution. Numerical simulations and physical phantom scanning were used to optimize the cone design. Eight healthy volunteers were scanned to compare the original radial trajectory in 4D CAPRIA with our newly designed cone trajectory. A locally low rank reconstruction method was used to leverage the complementary k-space sampling across time. RESULTS: The improved sampling in the periphery of k-space obtained with the optimized 3D cone trajectory resulted in improved spatial resolution compared with the radial trajectory in phantom scans. Improved vessel sharpness and perfusion visualization were also achieved in vivo. Less dephasing was observed in the angiograms because of the short TE of our cone trajectory and the improved k-space sampling efficiency also resulted in higher repeatability compared to the original radial approach. CONCLUSION: The proposed 3D cone trajectory combined with 3D golden angle ordering resulted in improved spatial resolution and image quality for both angiography and perfusion imaging and could potentially benefit other applications that require an efficient sampling scheme with flexible spatial and temporal resolution.


Asunto(s)
Imagenología Tridimensional , Angiografía por Resonancia Magnética , Fantasmas de Imagen , Marcadores de Spin , Humanos , Imagenología Tridimensional/métodos , Angiografía por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Adulto , Masculino , Algoritmos , Femenino , Imagen de Perfusión/métodos , Voluntarios Sanos , Procesamiento de Imagen Asistido por Computador/métodos , Simulación por Computador
2.
Magn Reson Med ; 92(2): 836-852, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38502108

RESUMEN

PURPOSE: Arterial spin labeling (ASL) is a widely used contrast-free MRI method for assessing cerebral blood flow (CBF). Despite the generally adopted ASL acquisition guidelines, there is still wide variability in ASL analysis. We explored this variability through the ISMRM-OSIPI ASL-MRI Challenge, aiming to establish best practices for more reproducible ASL analysis. METHODS: Eight teams analyzed the challenge data, which included a high-resolution T1-weighted anatomical image and 10 pseudo-continuous ASL datasets simulated using a digital reference object to generate ground-truth CBF values in normal and pathological states. We compared the accuracy of CBF quantification from each team's analysis to the ground truth across all voxels and within predefined brain regions. Reproducibility of CBF across analysis pipelines was assessed using the intra-class correlation coefficient (ICC), limits of agreement (LOA), and replicability of generating similar CBF estimates from different processing approaches. RESULTS: Absolute errors in CBF estimates compared to ground-truth synthetic data ranged from 18.36 to 48.12 mL/100 g/min. Realistic motion incorporated into three datasets produced the largest absolute error and variability between teams, with the least agreement (ICC and LOA) with ground-truth results. Fifty percent of the submissions were replicated, and one produced three times larger CBF errors (46.59 mL/100 g/min) compared to submitted results. CONCLUSIONS: Variability in CBF measurements, influenced by differences in image processing, especially to compensate for motion, highlights the significance of standardizing ASL analysis workflows. We provide a recommendation for ASL processing based on top-performing approaches as a step toward ASL standardization.


Asunto(s)
Encéfalo , Circulación Cerebrovascular , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Marcadores de Spin , Humanos , Circulación Cerebrovascular/fisiología , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Imagen de Perfusión/métodos , Masculino , Femenino , Adulto , Algoritmos
3.
Magn Reson Med ; 92(2): 469-495, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38594906

RESUMEN

Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article.


Asunto(s)
Encéfalo , Circulación Cerebrovascular , Marcadores de Spin , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Circulación Cerebrovascular/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Angiografía por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Imagen de Perfusión
4.
Magn Reson Med ; 89(4): 1323-1341, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36255158

RESUMEN

PURPOSE: Dynamic angiography using arterial spin labeling (ASL) can provide detailed hemodynamic information. However, the long time-resolved readouts require small flip angles to preserve ASL signal for later timepoints, limiting SNR. By using time-encoded ASL to generate temporal information, the readout can be shortened. Here, the SNR improvements from using larger flip angles, made possible by the shorter readout, are quantitatively investigated. METHODS: The SNR of a conventional protocol with nine Look-Locker readouts and a 4 × $$ \times $$ 3 time-encoded protocol with three Look-Locker readouts (giving nine matched timepoints) were compared using simulations and in vivo data. Both protocols were compared using readouts with constant flip angles (CFAs) and variable flip angles (VFAs), where the VFA scheme was designed to produce a consistent ASL signal across readouts. Optimization of the background suppression to minimize physiological noise across readouts was also explored. RESULTS: The time-encoded protocol increased in vivo SNR by 103% and 96% when using CFAs or VFAs, respectively. Use of VFAs improved SNR compared with CFAs by 25% and 21% for the conventional and time-encoded protocols, respectively. The VFA scheme also removed signal discontinuities in the time-encoded data. Preliminary data suggest that optimizing the background suppression could improve in vivo SNR by a further 16%. CONCLUSIONS: Time encoding can be used to generate additional temporal information in ASL angiography. This enables the use of larger flip angles, which can double the SNR compared with a non-time-encoded protocol. The shortened time-encoded readout can also lead to improved background suppression, reducing physiological noise and further improving SNR.


Asunto(s)
Imagenología Tridimensional , Angiografía por Resonancia Magnética , Angiografía por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Encéfalo , Marcadores de Spin , Circulación Cerebrovascular/fisiología , Algoritmos
5.
Magn Reson Med ; 87(6): 2667-2684, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35061920

RESUMEN

PURPOSE: Spatially selective arterial spin labeling (ASL) perfusion MRI is sensitive to arterial transit times (ATT) that can result in inaccurate perfusion quantification when ATTs are long. Velocity-selective ASL is robust to this effect because blood is labeled within the imaging region, allowing immediate label delivery. However, velocity-selective ASL cannot characterize ATTs, which can provide important clinical information. Here, we introduce a novel pulse sequence, called VESPA ASL, that combines velocity-selective and pseudo-continuous ASL to simultaneously label different pools of arterial blood for robust cerebral blood flow (CBF) and ATT measurement. METHODS: The VESPA ASL sequence is similar to velocity-selective ASL, but the velocity-selective labeling is made spatially selective, and pseudo-continuous ASL is added to fill the inflow time. The choice of inflow time and other sequence settings were explored. VESPA ASL was compared to multi-delay pseudo-continuous ASL and velocity-selective ASL through simulations and test-retest experiments in healthy volunteers. RESULTS: VESPA ASL is shown to accurately measure CBF in the presence of long ATTs, and ATTs < TI can also be measured. Measurements were similar to established ASL techniques when ATT was short. When ATT was long, VESPA ASL measured CBF more accurately than multi-delay pseudo-continuous ASL, which tended to underestimate CBF. CONCLUSION: VESPA ASL is a novel and robust approach to simultaneously measure CBF and ATT and offers important advantages over existing methods. It fills an important clinical need for noninvasive perfusion and transit time imaging in vascular diseases with delayed arterial transit.


Asunto(s)
Circulación Cerebrovascular , Imagen por Resonancia Magnética , Arterias/diagnóstico por imagen , Velocidad del Flujo Sanguíneo/fisiología , Circulación Cerebrovascular/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Perfusión , Marcadores de Spin
6.
Magn Reson Med ; 88(4): 1528-1547, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35819184

RESUMEN

This review article provides an overview of the current status of velocity-selective arterial spin labeling (VSASL) perfusion MRI and is part of a wider effort arising from the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group. Since publication of the 2015 consensus paper on arterial spin labeling (ASL) for cerebral perfusion imaging, important advancements have been made in the field. The ASL community has, therefore, decided to provide an extended perspective on various aspects of technical development and application. Because VSASL has the potential to become a principal ASL method because of its unique advantages over traditional approaches, an in-depth discussion was warranted. VSASL labels blood based on its velocity and creates a magnetic bolus immediately proximal to the microvasculature within the imaging volume. VSASL is, therefore, insensitive to transit delay effects, in contrast to spatially selective pulsed and (pseudo-) continuous ASL approaches. Recent technical developments have improved the robustness and the labeling efficiency of VSASL, making it a potentially more favorable ASL approach in a wide range of applications where transit delay effects are of concern. In this review article, we (1) describe the concepts and theoretical basis of VSASL; (2) describe different variants of VSASL and their implementation; (3) provide recommended parameters and practices for clinical adoption; (4) describe challenges in developing and implementing VSASL; and (5) describe its current applications. As VSASL continues to undergo rapid development, the focus of this review is to summarize the fundamental concepts of VSASL, describe existing VSASL techniques and applications, and provide recommendations to help the clinical community adopt VSASL.


Asunto(s)
Circulación Cerebrovascular , Angiografía por Resonancia Magnética , Angiografía por Resonancia Magnética/métodos , Imagen por Resonancia Magnética , Perfusión , Marcadores de Spin
7.
Magn Reson Med ; 86(4): 2208-2219, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34009682

RESUMEN

PURPOSE: Previously, multi- post-labeling delays (PLD) pseudo-continuous arterial spin labeling (pCASL) protocols have been optimized for the estimation accuracy of the cerebral blood flow (CBF) with/without the arterial transit time (ATT) under a standard kinetic model and a normal ATT range. This study aims to examine the estimation errors of these protocols under the effects of macrovascular contamination, flow dispersion, and prolonged arrival times, all of which might differ substantially in elderly or pathological groups. METHODS: Simulated data for four protocols with varying degrees of arterial blood volume (aBV), flow dispersion, and ATTs were fitted with different kinetic models, both with and without explicit correction for macrovascular signal contamination (MVC), to obtain CBF and ATT estimates. Sensitivity to MVC was defined and calculated when aBV > 0.5%. A previously acquired dataset was retrospectively analyzed to compare with simulation. RESULTS: All protocols showed underestimation of CBF and ATT in the prolonged ATT range. With MVC, the protocol optimized for CBF only (CBFopt) had the lowest sensitivity value to MVC, 33.47% and 60.21% error per 1% aBV in simulation and in vivo, respectively, among multi-PLD protocols. All multi-PLD protocols showed a significant decrease in estimation error when an extended kinetic model was used. Increasing flow dispersion at short ATTs caused increasing CBF and ATT overestimation in all protocols. CONCLUSION: CBFopt was the least sensitive protocol to prolonged ATT and MVC for CBF estimation while maintaining reasonably good performance in estimating ATT. Explicitly including a macrovascular component in the kinetic model was shown to be a feasible approach in controlling for MVC.


Asunto(s)
Circulación Cerebrovascular , Imagen por Resonancia Magnética , Anciano , Humanos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Marcadores de Spin
8.
Neuroimage ; 223: 117246, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32853814

RESUMEN

Arterial Spin Labeling (ASL) is a non-invasive, non-contrast, perfusion imaging technique which is inherently SNR limited. It is, therefore, important to carefully design scan protocols to ensure accurate measurements. Many pseudo-continuous ASL (PCASL) protocol designs have been proposed for measuring cerebral blood flow (CBF), but it has not yet been demonstrated which design offers the most accurate and repeatable CBF measurements. In this study, a wide range of literature PCASL protocols were first optimized for CBF accuracy and then compared using Monte Carlo simulations and in vivo experiments. The protocols included single-delay, sequential and time-encoded multi-timepoint protocols, and several novel protocol designs, which are hybrids of time-encoded and sequential multi-timepoint protocols. It was found that several multi-timepoint protocols produced more confident, accurate, and repeatable CBF estimates than the single-delay protocol, while also generating maps of arterial transit time. Of the literature protocols, the time-encoded protocol with T1-adjusted label durations gave the most confident and accurate CBF estimates in vivo (16% and 40% better than single-delay), while the sequential multi-timepoint protocol was the most repeatable (20% more repeatable than single-delay). One of the novel hybrid protocols, HybridT1-adj, was found to produce the most confident, accurate and repeatable CBF estimates out of all the protocols tested in both simulations and in vivo (24%, 47%, and 28% more confident, accurate, and repeatable than single-delay in vivo). The HybridT1-adj protocol makes use of the best aspects of both time-encoded and sequential multi-timepoint protocols and should be a useful tool for accurately and efficiently measuring CBF.


Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular , Imagen por Resonancia Magnética/métodos , Imagen de Perfusión/métodos , Adulto , Femenino , Humanos , Masculino , Método de Montecarlo , Reproducibilidad de los Resultados , Marcadores de Spin , Adulto Joven
9.
Magn Reson Med ; 81(4): 2474-2488, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30588656

RESUMEN

PURPOSE: Arterial spin labeling (ASL) MRI is a non-invasive perfusion imaging technique that is inherently SNR limited, so scan protocols ideally need to be rigorously optimized to provide the most accurate measurements. A general framework is presented for optimizing ASL experiments to achieve optimal accuracy for perfusion estimates and, if required, other hemodynamic parameters, within a fixed scan time. The effectiveness of this framework is then demonstrated by optimizing the post-labeling delays (PLDs) of a multi-PLD pseudo-continuous ASL experiment and validating the improvement using simulations and in vivo data. THEORY AND METHODS: A simple framework is proposed based on the use of the Cramér-Rao lower bound to find the protocol design which minimizes the predicted parameter estimation errors. Protocols were optimized for cerebral blood flow (CBF) accuracy or both CBF and arterial transit time (ATT) accuracy and compared to a conventional multi-PLD protocol, with evenly spaced PLDs, and a single-PLD protocol, using simulations and in vivo experiments in healthy volunteers. RESULTS: Simulations and in vivo data agreed extremely well with the predicted performance of all protocols. For the in vivo experiments, optimizing for just CBF resulted in a 48% and 15% decrease in CBF errors, relative to the reference multi-PLD and single-PLD protocols, respectively. Optimizing for both CBF and ATT reduced CBF errors by 37%, without a reduction in ATT accuracy, relative to the reference multi-PLD protocol. CONCLUSION: The presented framework can effectively design ASL experiments to minimize measurement errors based on the requirements of the scan.


Asunto(s)
Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular , Hemodinámica , Imagen por Resonancia Magnética/métodos , Marcadores de Spin , Adulto , Algoritmos , Encéfalo/irrigación sanguínea , Simulación por Computador , Femenino , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Método de Montecarlo , Reproducibilidad de los Resultados , Adulto Joven
12.
Sci Data ; 9(1): 543, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068231

RESUMEN

Arterial spin labeling (ASL) is a non-invasive MRI technique that allows for quantitative measurement of cerebral perfusion. Incomplete or inaccurate reporting of acquisition parameters complicates quantification, analysis, and sharing of ASL data, particularly for studies across multiple sites, platforms, and ASL methods. There is a strong need for standardization of ASL data storage, including acquisition metadata. Recently, ASL-BIDS, the BIDS extension for ASL, was developed and released in BIDS 1.5.0. This manuscript provides an overview of the development and design choices of this first ASL-BIDS extension, which is mainly aimed at clinical ASL applications. Discussed are the structure of the ASL data, focussing on storage order of the ASL time series and implementation of calibration approaches, unit scaling, ASL-related BIDS fields, and storage of the labeling plane information. Additionally, an overview of ASL-BIDS compatible conversion and ASL analysis software and ASL example datasets in BIDS format is provided. We anticipate that large-scale adoption of ASL-BIDS will improve the reproducibility of ASL research.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Neuroimagen , Humanos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/normas , Neuroimagen/métodos , Reproducibilidad de los Resultados , Marcadores de Spin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA