Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 526(7574): 546-9, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26490620

RESUMEN

Most stars become white dwarfs after they have exhausted their nuclear fuel (the Sun will be one such). Between one-quarter and one-half of white dwarfs have elements heavier than helium in their atmospheres, even though these elements ought to sink rapidly into the stellar interiors (unless they are occasionally replenished). The abundance ratios of heavy elements in the atmospheres of white dwarfs are similar to the ratios in rocky bodies in the Solar System. This fact, together with the existence of warm, dusty debris disks surrounding about four per cent of white dwarfs, suggests that rocky debris from the planetary systems of white-dwarf progenitors occasionally pollutes the atmospheres of the stars. The total accreted mass of this debris is sometimes comparable to the mass of large asteroids in the Solar System. However, rocky, disintegrating bodies around a white dwarf have not yet been observed. Here we report observations of a white dwarf--WD 1145+017--being transited by at least one, and probably several, disintegrating planetesimals, with periods ranging from 4.5 hours to 4.9 hours. The strongest transit signals occur every 4.5 hours and exhibit varying depths (blocking up to 40 per cent of the star's brightness) and asymmetric profiles, indicative of a small object with a cometary tail of dusty effluent material. The star has a dusty debris disk, and the star's spectrum shows prominent lines from heavy elements such as magnesium, aluminium, silicon, calcium, iron, and nickel. This system provides further evidence that the pollution of white dwarfs by heavy elements might originate from disrupted rocky bodies such as asteroids and minor planets.

2.
Nanotechnology ; 28(45): 455301, 2017 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-28895558

RESUMEN

We describe techniques for performing photolithography and electron beam lithography in succession on the same resist-covered substrate. Larger openings are defined in the resist film through photolithography whereas smaller openings are defined through conventional electron beam lithography. The two processes are carried out one after the other and without an intermediate wet development step. At the conclusion of the two exposures, the resist film is developed once to reveal both large and small openings. Interestingly, these techniques are applicable to both positive and negative tone lithographies with both optical and electron beam exposure. Polymethyl methacrylate, by itself or mixed with a photocatalytic cross-linking agent, is used for this purpose. We demonstrate that such resists are sensitive to both ultraviolet and electron beam irradiation. All four possible combinations, consisting of optical and electron beam lithographies, carried out in positive and negative tone modes have been described. Demonstration grating structures have been shown and process conditions have been described for all four cases.

3.
Appl Opt ; 55(8): 1899-905, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26974780

RESUMEN

Energy efficiency and lighting quality considerations are driving research into laser-pumped white light sources. Laser diodes as pump sources for downconversion phosphors promise freedom from "droop" that adversely affects the efficiency of light-emitting diodes (LEDs). High-intensity laser diode-pumped light sources for applications such as search lights and automobile headlights have been demonstrated recently. Our paper describes the design and construction of a domestic/office-type solid-state luminaire driven by light from an integrated violet laser-diode module. A trichromatic phosphor made from a blend of separate europium-containing rare-earth phosphors was used as the downconversion medium. Mechanical and optical design of the reflector and the phosphor plate are described. Characteristics of both the pump light and the downconverted light are also described. Our studies also looked at the variation of chromaticity coordinates with variation in pump power and the effect of laser speckle on the lamp's light output. Finally, there is a brief discussion of energy conversion efficiency and longevity considerations, comparing pumping with LEDs versus pumping with laser diodes.

4.
Science ; 382(6674): 1031-1035, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38033084

RESUMEN

Theories of planet formation predict that low-mass stars should rarely host exoplanets with masses exceeding that of Neptune. We used radial velocity observations to detect a Neptune-mass exoplanet orbiting LHS 3154, a star that is nine times less massive than the Sun. The exoplanet's orbital period is 3.7 days, and its minimum mass is 13.2 Earth masses. We used simulations to show that the high planet-to-star mass ratio (>3.5 × 10-4) is not an expected outcome of either the core accretion or gravitational instability theories of planet formation. In the core-accretion simulations, we show that close-in Neptune-mass planets are only formed if the dust mass of the protoplanetary disk is an order of magnitude greater than typically observed around very low-mass stars.

5.
Sci Am ; 316(5): 36-41, 2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28437418
6.
Science ; 330(6004): 653-5, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-21030652

RESUMEN

The questions of how planets form and how common Earth-like planets are can be addressed by measuring the distribution of exoplanet masses and orbital periods. We report the occurrence rate of close-in planets (with orbital periods less than 50 days), based on precise Doppler measurements of 166 Sun-like stars. We measured increasing planet occurrence with decreasing planet mass (M). Extrapolation of a power-law mass distribution fitted to our measurements, df/dlogM = 0.39 M(-0.48), predicts that 23% of stars harbor a close-in Earth-mass planet (ranging from 0.5 to 2.0 Earth masses). Theoretical models of planet formation predict a deficit of planets in the domain from 5 to 30 Earth masses and with orbital periods less than 50 days. This region of parameter space is in fact well populated, implying that such models need substantial revision.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA