Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Pathol ; 185(12): 3290-303, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26458765

RESUMEN

Type 17 helper T-cell cytokines have been implicated in the pathogenesis of inflammatory bowel disease, a chronic condition affecting the gastrointestinal tract, but information regarding their contribution to pathology in different regions of the gut is lacking. By using a murine model of bacteria-induced typhlocolitis, we investigated the role of IL-17A, IL-17F, and IL-22 in cecal versus colonic inflammation. Cecal, but not colonic, pathology in C57BL/6 mice inoculated with Helicobacter hepaticus plus anti-IL-10 receptor (IL-10R) monoclonal antibody was exacerbated by co-administration of anti-IL-17A monoclonal antibody, suggesting a disease-protective role for IL-17A in the cecum. In contrast, anti-IL-17F had no effect on H. hepaticus-induced intestinal pathology. Neutralization of IL-22 prevented the development of colonic, but not cecal, inflammation in H. hepaticus-infected anti-IL-10R-treated mice, demonstrating a pathogenic role for IL-22 in the colon. Analysis of transcript levels revealed differential expression of IL-22R, IL-22 binding protein, and IL-23R between cecum and colon, a finding that may help explain why these tissues respond differently after anti-IL-22 treatment. Analysis of microarray data from healthy human intestine further revealed significant differences in cytokine receptor transcript levels (including IL-22RA1 and IL-23R) in distinct parts of the human gut. Together, our findings demonstrate that individual type 17 helper T-cell cytokines can have proinflammatory or anti-inflammatory effects in different regions of the intestine, an observation that may have implications for interventions against human inflammatory bowel disease.


Asunto(s)
Colitis/microbiología , Infecciones por Helicobacter/inmunología , Helicobacter hepaticus , Interleucina-17/inmunología , Interleucinas/inmunología , Tiflitis/microbiología , Animales , Anticuerpos Monoclonales/inmunología , Colitis/inmunología , Colitis/prevención & control , Femenino , Expresión Génica/inmunología , Humanos , Interleucina-17/biosíntesis , Interleucina-17/genética , Interleucinas/biosíntesis , Interleucinas/genética , Intestinos/inmunología , Ratones Endogámicos C57BL , ARN Mensajero/genética , Receptores de Citocinas/biosíntesis , Tiflitis/inmunología , Interleucina-22
2.
J Biol Chem ; 288(2): 1409-19, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23184956

RESUMEN

Protein biosynthesis and extracellular secretion are essential biological processes for therapeutic protein production in mammalian cells, which offer the capacity for correct folding and proper post-translational modifications. In this study, we have generated bispecific therapeutic fusion proteins in mammalian cells by combining a peptide and an antibody into a single open reading frame. A neutralizing peptide directed against interleukin-17A (IL17A) was genetically fused to the N termini of an anti-IL22 antibody, through either the light chain, the heavy chain, or both chains. Although the resulting fusion proteins bound and inhibited IL22 with the same affinity and potency as the unmodified anti-IL22 antibody, the peptide modality in the fusion scaffold was not active in the cell-based assay due to the N-terminal degradation. When a glutamine residue was introduced at the N terminus, which can be cyclized to form pyroglutamate in mammalian cells, the IL17A neutralization activity of the fusion protein was restored. Interestingly, the mass spectroscopic analysis of the purified fusion protein revealed an unexpected O-linked glycosylation modification at threonine 5 of the anti-IL17A peptide. The subsequent removal of this post-translational modification by site-directed mutagenesis drastically enhanced the IL17A binding affinity and neutralization potency for the resulting fusion protein. These results provide direct experimental evidence that post-translational modifications during protein biosynthesis along secretory pathways play critical roles in determining the structure and function of therapeutic proteins produced by mammalian cells. The newly engineered peptide-antibody genetic fusion is promising for therapeutically targeting multiple antigens in a single antibody-like molecule.


Asunto(s)
Anticuerpos Biespecíficos/genética , Interleucina-17/inmunología , Interleucinas/inmunología , Polisacáridos/química , Ácido Pirrolidona Carboxílico/química , Secuencia de Aminoácidos , Cromatografía Liquida , Ensayo de Inmunoadsorción Enzimática , Células HEK293 , Humanos , Espectrometría de Masas , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Procesamiento Proteico-Postraduccional , Interleucina-22
3.
Protein Expr Purif ; 87(1): 27-34, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23069765

RESUMEN

The T helper cell-derived cytokine interleukin-17A (IL-17A) is a variably glycosylated disulfide-linked homodimer of 34-38 kDa. Its polypeptide monomer contains one canonical N-glycosylation site at Asn68, and human recombinant IL-17A was partly N-glycosylated when expressed in human kidney (HEK293) cells as a fusion protein with a melittin signal sequence and an N-terminal hexahistidine tag. Orbitrap mass analyses of the tryptic N-glycopeptide 63-69 indicated that the N-glycosylation was of the GalNAc-terminated type characteristic of cultured kidney cells. The mass spectrum of IL-17A monomer also included peaks shifted by +948 Da from the respective masses of unglycosylated and N-glycosylated polypeptides. These were caused by unpredicted partial O-glycosylation of Thr26 with the mucin-like structure -GalNAc(-NeuNAc)-Gal-NeuNAc. Identical O-glycosylation occurred in commercially sourced recombinant IL-17A also expressed in HEK293 cells but with a different N-terminal sequence. Therefore, the kidney host cell line not only imposed its characteristic pattern of N-glycosylation on recombinant IL-17A but additionally created an O-glycosylation not known to be present in the T cell-derived cytokine. Mammalian host cell lines for recombinant protein expression generally impose their characteristic patterns of N-glycosylation on the product, but this work exemplifies how a host may also unpredictably O-glycosylate a protein that is probably not normally O-glycosylated.


Asunto(s)
Interleucina-17/biosíntesis , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/biosíntesis , Secuencia de Aminoácidos , Linfocitos T CD4-Positivos/metabolismo , Conformación de Carbohidratos , Secuencia de Carbohidratos , Glicosilación , Células HEK293 , Humanos , Proteínas de Insectos/biosíntesis , Proteínas de Insectos/química , Interleucina-17/química , Meliteno/biosíntesis , Meliteno/química , Datos de Secuencia Molecular , Peso Molecular , Mapeo Peptídico , Señales de Clasificación de Proteína , Proteínas Recombinantes de Fusión/química , Espectrometría de Masas en Tándem
4.
Am J Respir Cell Mol Biol ; 46(1): 71-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21836154

RESUMEN

The expression of acidic mammalian chitinase (AMCase) is associated with Th2-driven respiratory disorders. To investigate the potentially pathological role of AMCase in allergic airway disease (AAD), we sensitized and challenged mice with ovalbumin or a combination of house dust mite (HDM) plus cockroach allergen. These mice were treated or not treated with small molecule inhibitors of AMCase, which significantly reduced allergen-induced chitinolytic activity in the airways, but exerted no apparent effect on pulmonary inflammation per se. Transgenic and AMCase-deficient mice were also submitted to protocols of allergen sensitization and challenge, yet we found little or no difference in the pattern of AAD between mutant mice and wild-type (WT) control mice. In a separate model, where mice were challenged only with intratracheal instillations of HDM without adjuvant, total bronchoalveolar lavage (BAL) cellularity, inflammatory infiltrates in lung tissues, and lung mechanics remained comparable between AMCase-deficient mice and WT control mice. However BAL neutrophil and lymphocyte counts were significantly increased in AMCase-deficient mice, whereas concentrations in BAL of IL-13 were significantly decreased compared with WT control mice. These results indicate that, although exposure to allergen stimulates the expression of AMCase and increased chitinolytic activity in murine airways, the overexpression or inhibition of AMCase exerts only a subtle impact on AAD. Conversely, the increased numbers of neutrophils and lymphocytes in BAL and the decreased concentrations of IL-13 in AMCase-deficient mice challenged intratracheally with HDM indicate that AMCase contributes to the Th1/Th2 balance in the lungs. This finding may be of particular relevance to patients with asthma and increased airway neutrophilia.


Asunto(s)
Asma/enzimología , Quitinasas/antagonistas & inhibidores , Hipersensibilidad/enzimología , Alérgenos/inmunología , Animales , Asma/genética , Asma/inmunología , Líquido del Lavado Bronquioalveolar/inmunología , Quitinasas/deficiencia , Quitinasas/genética , Quitinasas/inmunología , Femenino , Humanos , Hipersensibilidad/genética , Hipersensibilidad/inmunología , Inflamación/enzimología , Inflamación/genética , Inflamación/inmunología , Interleucina-13/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Neutrófilos/inmunología , Células TH1/inmunología , Células Th2/inmunología
5.
J Immunol ; 185(7): 4213-22, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20817881

RESUMEN

The receptor for advanced glycation end products (RAGE) is a multiligand transmembrane receptor implicated in a number of diseases including autoimmune diseases. To further understand the pathogenic mechanism of RAGE in these diseases, we searched for additional ligands. We discovered that C3a bound to RAGE with an EC(50) of 1.9 nM in an ELISA, and the binding was increased both in magnitude (by >2-fold) and in affinity (EC(50) 70 pM) in the presence of human stimulatory unmethylated cytosine-guanine-rich DNA A (hCpGAs). Surface plasmon resonance and fluorescence anisotropy analyses demonstrated that hCpGAs could bind directly to RAGE and C3a and form a ternary complex. In human PBMCs, C3a increased IFN-α production in response to low levels of hCpGAs, and this synergy was blocked by soluble RAGE or by an Ab directed against RAGE. IFN-α production was reduced in response to mouse CpGAs and C3a in RAGE(-/-) mouse bone marrow cells compared wild-type mice. Taken together, these data demonstrate that RAGE is a receptor for C3a and CpGA. Through direct interaction, C3a and CpGA synergize to increase IFN-α production in a RAGE-dependent manner and stimulate an innate immune response. These findings indicate a potential role of RAGE in autoimmune diseases that show accumulation of immunostimulatory DNA and C3a.


Asunto(s)
Complemento C3a/metabolismo , ADN/metabolismo , Interferón gamma/metabolismo , Oligonucleótidos/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Animales , Complemento C3a/inmunología , ADN/inmunología , Ensayo de Inmunoadsorción Enzimática , Humanos , Interferón gamma/inmunología , Ratones , Ratones Noqueados , Oligonucleótidos/inmunología , Unión Proteica , Receptor para Productos Finales de Glicación Avanzada/inmunología , Resonancia por Plasmón de Superficie
6.
Immunol Rev ; 226: 87-102, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19161418

RESUMEN

T-helper 17 (Th17) cells are a new lineage of CD4(+) T cells that are characterized by their production of interleukin-17A (IL-17A). Recent studies show that these cells can also express IL-17F, IL-22, and IL-21. IL-17A and IL-17F can form a heterodimeric cytokine, which mediates biological activities, at least in part, through shared receptors with IL-17A and IL-17F homodimers. The cytokines made by Th17 cells represent three distinct gene families, highlighting the unique biology of these cells. Accumulating data support a role for Th17 cells and these cytokines in inflammatory processes and in animal models of autoimmunity or inflammation. Emerging data in clinical trials support our understanding of the importance of Th17 cells in inflammatory disease. Future clinical studies will allow us to evaluate the role of each cytokine independently in contributing to human diseases with immune-mediated pathologies and to design optimal cytokine-targeted therapies for these diseases.


Asunto(s)
Interleucina-17/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Dimerización , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-17/metabolismo , Interleucinas/inmunología , Interleucinas/metabolismo , Receptores de Interleucina-17/inmunología , Receptores de Interleucina-17/metabolismo , Transducción de Señal/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Colaboradores-Inductores/metabolismo , Interleucina-22
7.
Yeast ; 28(9): 661-71, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21809386

RESUMEN

A consortium of yeast geneticists have created -6000 individual ORF deletions, representing > 96% of the currently verified or predicted ORFs in S. cerevisiae. Importantly, molecular barcodes (each a unique 20 bp sequence termed either Uptag or Downtag) were used as identifiers for every ORF deletion. Microarray analyses of pooled yeast deletions has been used to identify thousands of genes involved in general fitness, haploinsufficiency, drug resistance and DNA damage repair. However, application of this powerful technology requires considerable expense, expertise and specialized equipment. While standard PCR techniques and specifically designed PCR primers can be used to confirm that a given ORF is in fact deleted, this procedure cannot be used to identify unknown deletions. In theory, every ORF deletion could be determined by barcode sequencing. However, neither a consolidated barcode database nor a reliable search engine is currently available for this purpose. To address this need, we have adapted a FASTA sequence program that utilizes the unique barcode database to allow users to identify individual ORF deletions, based upon simple sequencing reactions of PCR amplifications of either Uptag or Downtag barcodes. In silico and practical testing of this application reveals that it is an inexpensive, reliable and reproducible method for rapidly identifying unknown deletions. This approach allows laboratories to conduct small- or large-scale genetic screens with pooled yeast deletion strains and identify or verify any ORF deletion without the need for microarray technology.


Asunto(s)
Biología Computacional/métodos , Procesamiento Automatizado de Datos/métodos , Sistemas de Lectura Abierta , Saccharomyces cerevisiae/genética , Eliminación de Secuencia , Programas Informáticos , Secuencia de Bases , Biología Computacional/instrumentación , Bases de Datos de Ácidos Nucleicos/instrumentación , Procesamiento Automatizado de Datos/instrumentación , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
8.
Am J Pathol ; 176(4): 1600-6, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20150433

RESUMEN

Alzheimer's disease (AD) is characterized by neuronal death; thus, identifying neurotoxic proteins and their source is central to understanding and treating AD. The multifunctional protease thrombin is neurotoxic and found in AD senile plaques. The objective of this study was to determine whether brain endothelial cells can synthesize thrombin and thus be a source of this neurotoxin in AD brains. Microvessels were isolated from AD patient brains and from age-matched controls. Reverse transcription-PCR demonstrated that thrombin message was highly expressed in microvessels from AD brains but was not detectable in control vessels. Similarly, Western blot analysis of microvessels showed that the thrombin protein was highly expressed in AD- but not control-derived microvessels. In addition, high levels of thrombin were detected in cerebrospinal fluid obtained from AD but not control patients, and sections from AD brains showed reactivity to thrombin antibody in blood vessel walls but not in vessels from controls. Finally, we examined the ability of brain endothelial cells in culture to synthesize thrombin and showed that oxidative stress or cell signaling perturbations led to increased expression of thrombin mRNA in these cells. The results demonstrate, for the first time, that brain endothelial cells can synthesize thrombin, and suggest that novel therapeutics targeting vascular stabilization that prevent or decrease release of thrombin could prove useful in treating this neurodegenerative disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Células Endoteliales/citología , Neurotoxinas/química , Trombina/biosíntesis , Anciano , Animales , Modelos Animales de Enfermedad , Humanos , Microcirculación , Persona de Mediana Edad , Enfermedades Neurodegenerativas/patología , Placa Amiloide/metabolismo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Trombina/química
9.
Anal Biochem ; 399(2): 284-92, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20018163

RESUMEN

Vanin-1 is a pantetheinase that catalyzes the hydrolysis of pantetheine to produce pantothenic acid (vitamin B5) and cysteamine. Reported here is a highly sensitive fluorescent assay using a novel fluorescently labeled pantothenate derivative. The assay has been used for characterization of a soluble version of human vanin-1 recombinant protein, identification and characterization of hits from high-throughput screening (HTS), and quantification of vanin pantothenase activity in cell lines and tissues. Under optimized assay conditions, we quantified vanin pantothenase activity in tissue lysate and found low activity in lung and liver but high activity in kidney. We demonstrated that the purified recombinant vanin-1 consisting of the extracellular portion without the glycosylphosphatidylinositol (GPI) linker was highly active with an apparent K(m) of 28 microM for pantothenate-7-amino-4-methylcoumarin (pantothenate-AMC), which was converted to pantothenic acid and AMC based on liquid chromatography-mass spectrometry (LC-MS) analysis. The assay also performed well in a 384-well microplate format under initial rate conditions (10% conversion) with a signal-to-background ratio (S/B) of 7 and a Z factor of 0.75. Preliminary screening of a library of 1280 pharmaceutically active compounds identified inhibitors with novel chemical scaffolds. This assay will be a powerful tool for target validation and drug lead identification and characterization.


Asunto(s)
Amidohidrolasas/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Inhibidores Enzimáticos/química , Espectrometría de Masas/métodos , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/genética , Secuencia de Aminoácidos , Animales , Línea Celular , Inhibidores Enzimáticos/farmacología , Colorantes Fluorescentes/química , Proteínas Ligadas a GPI , Ensayos Analíticos de Alto Rendimiento , Humanos , Riñón/enzimología , Ratones , Datos de Secuencia Molecular , Ácido Pantoténico/química , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrofotometría Ultravioleta
10.
J Immunol ; 181(4): 2799-805, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18684971

RESUMEN

IL-17A and IL-17F, produced by the Th17 CD4(+) T cell lineage, have been linked to a variety of inflammatory and autoimmune conditions. We recently reported that activated human CD4(+) T cells produce not only IL-17A and IL-17F homodimers but also an IL-17F/IL-17A heterodimeric cytokine. All three cytokines can induce chemokine secretion from bronchial epithelial cells, albeit with different potencies. In this study, we used small interfering RNA and Abs to IL-17RA and IL-17RC to demonstrate that heterodimeric IL-17F/IL-17A cytokine activity is dependent on the IL-17RA/IL-17RC receptor complex. Interestingly, surface plasmon resonance studies indicate that the three cytokines bind to IL-17RC with comparable affinities, whereas they bind to IL-17RA with different affinities. Thus, we evaluated the effect of the soluble receptors on cytokine activity and we find that soluble receptors exhibit preferential cytokine blockade. IL-17A activity is inhibited by IL-17RA, IL-17F is inhibited by IL-17RC, and a combination of soluble IL-17RA/IL-17RC receptors is required for inhibition of the IL-17F/IL-17A activity. Altogether, these results indicate that human IL-17F/IL-17A cytokine can bind and signal through the same receptor complex as human IL-17F and IL-17A. However, the distinct affinities of the receptor components for IL-17A, IL-17F, and IL-17F/IL-17A heterodimer can be exploited to differentially affect the activity of these cytokines.


Asunto(s)
Interleucina-17/fisiología , Receptores de Interleucina-17/fisiología , Receptores de Interleucina/fisiología , Transducción de Señal/inmunología , Línea Celular , Dimerización , Relación Dosis-Respuesta Inmunológica , Humanos , Interleucina-17/antagonistas & inhibidores , Interleucina-17/química , Interleucina-17/metabolismo , Unión Proteica/inmunología , Receptores de Interleucina/metabolismo , Receptores de Interleucina-17/metabolismo
13.
Exp Biol Med (Maywood) ; 240(6): 701-10, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25819684

RESUMEN

Aging is exemplified by progressive, deleterious changes that increase the probability of death. However, while the effects of age are easy to recognize, identification of the processes involved has proved to be much more difficult. Somewhat surprisingly, research using the budding yeast has had a profound impact on our current understanding of the mechanisms involved in aging. Herein, we examine the biological significance and implications surrounding the observation that genetic pathways involved in the modulation of aging and the determination of lifespan in yeast are highly complicated and conserved.


Asunto(s)
Envejecimiento , Modelos Biológicos , Saccharomycetales , Humanos
14.
Int Immunopharmacol ; 4(5): 693-708, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15120653

RESUMEN

Interleukin 22 (IL-22) is a cytokine induced during both innate and adaptive immune responses. It can effect an acute phase response, implicating a role for IL-22 in mechanisms of inflammation. IL-22 requires the presence of the IL-22 receptor (IL-22R) and IL-10 receptor 2 (IL-10R2) chains, two members of the class II cytokine receptor family (CRF2), to effect signal transduction within a cell. We studied the interaction between human IL-22 and the extracellular domains (ECD) of its receptor chains in an enzyme-linked immunoabsorbant assay (ELISA)-based format, using biotinylated IL-22 (bio-IL-22) and receptor-fusions containing the ECD of a receptor fused to the Fc of hIgG1 (IL-22R-Fc and IL-10R2-Fc). IL-22 has measurable affinity for IL-22R-Fc homodimer and undetectable affinity for IL-10R2. IL-22 has substantially greater affinity for IL-22R/IL-10R2-Fc heterodimers. Further analyses involving sequential additions of receptor homodimers and cytokine indicates that the IL-10R2(ECD) binds to a surface created by the interaction between IL-22 and the IL-22R(ECD), and thereby further stabilizes the association of IL-22 within this cytokine-receptor-Fc complex. Both a neutralizing rat monoclonal antibody, specific for human IL-22, and human IL-22BP-Fc, an Fc-fusion of the secreted IL-22 binding-protein and proposed natural antagonist for IL-22, bind to similar cytokine epitopes that may overlap the binding site for IL-22R(ECD). Another rat monoclonal antibody, specific for IL-22, binds to an epitope that may overlap a separate binding site for IL-10R2(ECD). We propose, based on this data, a temporal model for the development of a functional IL-22 cytokine-receptor complex.


Asunto(s)
Interleucinas/metabolismo , Receptores de Interleucina/metabolismo , Animales , Células CHO , Cricetinae , Dimerización , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Interleucinas/farmacología , Receptores de Interleucina/efectos de los fármacos , Receptores de Interleucina-10 , Factores de Tiempo , Interleucina-22
15.
Photochem Photobiol ; 78(4): 342-8, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14626661

RESUMEN

The risk to outdoor workers of exposure to solar ultraviolet radiation (UVR) has been known for some time, particularly in the building and construction industry, where workers often use little in the way of protection against solar UVR. In recent years there have been attempts by authorities in Australia and in Queensland in particular, where UVR levels in spring and summer are very high to extreme, to instigate and to encourage the use of personal UVR protection by outdoor workers. To quantify UVR exposure of building and construction industry workers involved in typical outdoor work, a study was conducted using UVR-sensitive polysulphone film badges. The results indicated that the doses were significant, often well in excess of recommended exposure limits. The measured exposures varied between trades. Data on the use of personal UVR-protective equipment and the skin type of workers were also collected. Many of the workers had skin types that were sensitive to UVR and showed signs of sunburn. In summary, the study found that at-risk individuals were exposed to extreme levels of UVR, in most cases without adequate and appropriate sun protection.


Asunto(s)
Exposición Profesional , Luz Solar , Humanos , Industrias , Queensland , Tolerancia a Radiación
16.
Curr Biol ; 24(7): R283-5, 2014 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-24698379

RESUMEN

When is less more? A new study reveals that decreased mitochondrial gene expression and reduced lipid biosynthesis may actually increase cell growth.


Asunto(s)
Tamaño de la Célula , Metaboloma/fisiología , Transcripción Genética/fisiología , Animales , Femenino
17.
Int Immunopharmacol ; 18(2): 225-7, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24295652

RESUMEN

The peptide-antibody (Ab) genetic fusion is a promising technology for targeting multiple antigens in a single Ab-like molecule. We have recently described generation and in vitro characterization of several such genetic fusions, using an interleukin (IL)-17A binding peptide and an anti-IL-22 Ab as a model system. In this study we assessed pharmacokinetic profiles of these model genetic fusions in mice. Specifically an IL-17A binding peptide was fused to either the heavy chain or both the heavy and the light chains of an anti-IL22 human IgG1 (referred to Compounds 1 or 2, respectively). Swiss Webster mice were given a single 10 mg/kg IV dose of Compound 1 or Compound 2 and serum concentrations were measured by a fused molecule immunoassay, in which IL-17A was used as a capture and anti-human IgG was used as a detector. In addition, serum samples were assayed using a total human IgG immunoassay. PK parameters were calculated by non-compartmental modeling. The two genetic fusions had similar PK profiles, with total body clearance of ~0.9-1.0 mL/h/kg, volume of distribution at steady-state of ~63-65 mL/kg, and elimination half-life of ~40 h. Our study provides the first characterization of the PK properties of peptide-Ab genetic fusions and suggests that although these genetic fusions appear to be eliminated faster than a typical Ab, the PK profile may be suitable for preclinical and clinical testing.


Asunto(s)
Anticuerpos Biespecíficos/farmacocinética , Proteínas Recombinantes de Fusión/farmacocinética , Animales , Anticuerpos Biespecíficos/sangre , Humanos , Inmunoglobulina G/inmunología , Interleucina-17/genética , Interleucina-17/inmunología , Interleucinas/genética , Interleucinas/inmunología , Masculino , Ratones , Péptidos/genética , Péptidos/inmunología , Proteínas Recombinantes de Fusión/sangre , Interleucina-22
18.
Int J Cell Biol ; 2013: 273086, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23690780

RESUMEN

Over the lifespan of therapeutic proteins, from the point of biosynthesis to the complete clearance from tested subjects, they undergo various biological modifications. Therapeutic influences and molecular mechanisms of these modifications have been well appreciated for some while remained less understood for many. This paper has classified these modifications into multiple categories, according to their processing locations and enzymatic involvement during the trafficking events. It also focuses on the underlying mechanisms and structural-functional relationship between modifications and therapeutic properties. In addition, recent advances in protein engineering, cell line engineering, and process engineering, by exploring these complex cellular processes, are discussed and summarized, for improving functional characteristics and attributes of protein-based biopharmaceutical products.

19.
Cell Div ; 7(1): 24, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23234503

RESUMEN

Cell size homeostasis is a conserved attribute in many eukaryotic species involving a tight regulation between the processes of growth and proliferation. In budding yeast S. cerevisiae, growth to a "critical cell size" must be achieved before a cell can progress past START and commit to cell division. Numerous studies have shown that progression past START is actively regulated by cell size control genes, many of which have implications in cell cycle control and cancer. Two initial screens identified genes that strongly modulate cell size in yeast. Since a second generation yeast gene knockout collection has been generated, we screened an additional 779 yeast knockouts containing 435 new ORFs (~7% of the yeast genome) to supplement previous cell size screens. Upon completion, 10 new strong size mutants were identified: nine in log-phase cells and one in saturation-phase cells, and 97% of the yeast genome has now been screened for cell size mutations. The majority of the logarithmic phase size mutants have functions associated with translation further implicating the central role of growth control in the cell division process. Genetic analyses suggest ECM9 is directly associated with the START transition. Further, the small (whi) mutants mrpl49Δ and cbs1Δ are dependent on CLN3 for cell size effects. In depth analyses of new size mutants may facilitate a better understanding of the processes that govern cell size homeostasis.

20.
J Inflamm (Lond) ; 9: 11, 2012 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-22448747

RESUMEN

BACKGROUND: Toll-like receptor 4 (TLR4) is activated by bacterial endotoxin, a prototypical pathogen-associated molecular pattern (PAMP). It has been suggested that TLR4 can also be activated by damage-associated molecular pattern (DAMP) proteins such as HSP70. It remains a challenge to provide unequivocal evidence that DAMP proteins themselves play a role in TLR4 activation, as the DAMP proteins used are often contaminated with endotoxin and other TLR ligands introduced during protein expression and/or purification. RESULTS: Here we report that the activation of TLR4 on primary human macrophage cultures by recombinant HSP70 is not solely due to contaminating endotoxin. Polymyxin B pretreatment of HSP70 preparations to neutralize contaminating endotoxin caused significant reductions in the amount of TNF-α induced by the recombinant protein as determined by ELISA. However, digestion of HSP70 with Proteinase K-agarose beads also dramatically reduced the TNF-α response of macrophages to HSP70, while leaving levels of contaminating endotoxin largely unchanged relative to controls. CONCLUSIONS: These results indicate that the stimulatory effect of recombinant HSP70 requires both the presence of endotoxin and structural integrity of the heat shock protein itself.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA