Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(36): 43159-43168, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37651452

RESUMEN

Thermally conductive cellulose-based composites have great application potential in the thermal management of portable and wearable electronic devices. In this work, cellulose-based composites with excellent mechanical and thermal properties were developed by using lysozyme-modified graphene nanoplatelets (LmGNP), epichlorohydrin (ECH), and hydrolyzed cellulose via forming strong double-cross-linked interface interactions, including the hydrogen bond network generated between LmGNP and cellulose and the chemical cross-link of ECH. As for the composites containing 8 wt % LmGNP, the in-plane thermal conductivity was 3.341 W·m-1K-1, while the tensile stress was 114.60 MPa, which increased by 297.3 and 146.2%, respectively, compared to pure cellulose. Along with the good stability, insulation, and lightweight properties, the fabricated composites have the potential to become a promising heat dissipation material for wearable electronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA