Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 20(5): e1011284, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38743783

RESUMEN

The Integrator is a multi-subunit protein complex that catalyzes the maturation of snRNA transcripts via 3' cleavage, a step required for snRNA incorporation with snRNP for spliceosome biogenesis. Here we developed a GFP based in vivo snRNA misprocessing reporter as a readout of Integrator function and performed a genome-wide RNAi screen for Integrator regulators. We found that loss of the Argonaute encoding csr-1 gene resulted in widespread 3' misprocessing of snRNA transcripts that is accompanied by a significant increase in alternative splicing. Loss of the csr-1 gene down-regulates the germline expression of Integrator subunits 4 and 6 and is accompanied by a reduced protein translation efficiency of multiple Integrator catalytic and non-catalytic subunits. Through isoform and motif mutant analysis, we determined that CSR-1's effect on snRNA processing is dependent on its catalytic slicer activity but does not involve the CSR-1a isoform. Moreover, mRNA-sequencing revealed high similarity in the transcriptome profile between csr-1 and Integrator subunit knockdown via RNAi. Together, our findings reveal CSR-1 as a new regulator of the Integrator complex and implicate a novel role of this Argonaute protein in snRNA 3' processing.


Asunto(s)
Proteínas Argonautas , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , ARN Nuclear Pequeño , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Animales , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Empalme Alternativo/genética , Interferencia de ARN , Procesamiento Postranscripcional del ARN , Empalmosomas/metabolismo , Empalmosomas/genética
2.
Phys Chem Chem Phys ; 26(1): 421-429, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38078535

RESUMEN

Lattice thermal conductivity (κL) plays a crucial role in the thermal management of electronic devices. In this study, we systematically investigate the thermal transport properties of monolayer fluorinated graphene using a combination of machine learning-based interatomic potentials and the phonon Boltzmann transport equation. At a temperature of 300 K, we find that the κL values for chair-configured fluorinated graphene monolayers are 184.24 W m-1 K-1 in the zigzag direction and 205.57 W m-1 K-1 in the armchair direction. For the boat configuration, the κL values are 120.45 W m-1 K-1 and 64.26 W m-1 K-1 in the respective directions. The disparities in κL between these two configurations predominantly stem from differences in phonon relaxation times, which can be elucidated by examining the Grüneisen parameters representing the degree of anharmonicity. A more in-depth analysis of bond strengths, as assessed by the crystal orbital Hamiltonian population, reveals that the stronger in-plane CC bonds in chair-configured fluorinated graphene monolayers are the primary contributors to the observed variations in anharmonicity.

3.
Nanotechnology ; 33(21)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35130521

RESUMEN

Based on the method of non-equilibrium Green's function, we investigate the thermal transport and thermoelectric properties of graphenylene nanoribbons (GRNRs) with different width and chirality. The results show that the thermoelectric (TE) performance of GRNRs significantly increases with decreasing ribbon width, which stems from the reduction of thermal conductance. In addition, by changing the ribbon width and chirality, the figure of merit (ZT) can be controllably manipulated and maximized up to 0.45 at room temperature. Moreover, it is found that theZTvalue of GRNRs with branched structure can reach 1.8 at 300 K and 3.4 at 800 K owing to the phonon local resonance. Our findings here are of great importance for thermoelectric applications of GRNRs.

4.
Int J Hyperthermia ; 38(1): 13-21, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33491511

RESUMEN

Aim: Magnetic hydrogels (MHGs) have been proposed to avoid the redistribution and loss of magnetic nanoparticles (MNPs) when administrated by intratumoral injection. However, the requirement of complex cooling systems and temperature monitoring systems still hinder the clinical application of MHGs. This study investigates the feasibility of developing an MHG to realize the self-regulation of hyperthermia temperature. Methods: The MHG was developed by dispersing the MNPs with self-regulating temperature property into the temperature-sensitive hydrogel through physical crosslinking. The MHG's gelation temperature was tested by measuring the storage modulus and loss modulus on a rotational rheometer. The biocompatibility of the MHG and MNPs was characterized by CCK-8 assay against HaCaT cells. The in vivo magnetic heating property was examined through monitoring the temperature in the MHG on mice back upon the application of the alternating magnetic field (400 ± 5 Oe, 100 ± 5 kHz) every week for successive six weeks. Results: The gelation temperature of the MHG falls in 28.4°C-37.4°C. At in vivo applied concentration of 80 mg/mL, the MHG exhibits over 80% cell viability after 72 h, significantly higher than 50% cell viability of the MNPs (p<0.001). The MHG's stable magnetic hyperthermia temperatures in vivo are in the range of 43.4°C-43.8°C. Conclusions: The developed MHG can be injected using a syringe and will solidify upon body temperature. The biocompatibility is improved after the MNPs being made into MHG. The MHG can self-regulate the temperature for six weeks, exhibiting application potential for self-regulating temperature hyperthermia.


Asunto(s)
Hipertermia Inducida , Nanopartículas de Magnetita , Animales , Hidrogeles , Hipertermia , Campos Magnéticos , Ratones , Temperatura
5.
BMC Biol ; 17(1): 56, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31311534

RESUMEN

BACKGROUND: Adaptive responses to stress are essential for cell and organismal survival. In metazoans, little is known about the impact of environmental stress on RNA homeostasis. RESULTS: By studying the regulation of a cadmium-induced gene named numr-1 in Caenorhabditis elegans, we discovered that disruption of RNA processing acts as a signal for environmental stress. We find that NUMR-1 contains motifs common to RNA splicing factors and influences RNA splicing in vivo. A genome-wide screen reveals that numr-1 is strongly and specifically induced by silencing of genes that function in basal RNA metabolism including subunits of the metazoan integrator complex. Human integrator processes snRNAs for functioning with splicing factors, and we find that silencing of C. elegans integrator subunits disrupts snRNA processing, causes aberrant pre-mRNA splicing, and induces the heat shock response. Cadmium, which also strongly induces numr-1, has similar effects on RNA and the heat shock response. Lastly, we find that heat shock factor-1 is required for full numr-1 induction by cadmium. CONCLUSION: Our results are consistent with a model in which disruption of integrator processing of RNA acts as a molecular damage signal initiating an adaptive stress response mediated by heat shock factor-1. When numr-1 is induced via this pathway in C. elegans, its function in RNA metabolism may allow it to mitigate further damage and thereby promote tolerance to cadmium.


Asunto(s)
Cadmio/toxicidad , Caenorhabditis elegans/fisiología , Regulación de la Expresión Génica , Respuesta al Choque Térmico/fisiología , Procesamiento Postranscripcional del ARN/fisiología , Empalme del ARN , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Respuesta al Choque Térmico/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Estrés Fisiológico
6.
Biochem Cell Biol ; 97(5): 536-544, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30763120

RESUMEN

Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) are excellent models for studying acute brain ischemia because they show high resistance to reductions in blood flow and oxygen delivery without evidence of neurological damage. In this study, we analyzed the insulin signaling pathway and regulation of mitochondrial substrate oxidation in three regions of ground squirrel brain (forebrain, cerebellum, and brainstem), comparing summer, late torpor, and interbout arousal conditions. We found select decreases in phospho-Akt in the cerebellum during torpor compared with summer animals, as well as select increases in the forebrain during interbout arousal, suggesting that Akt may influence either metabolism or cytoprotective pathways. The phosphoprotein abundance of glycogen synthase kinase 3 beta (GSK3ß) showed the most consistent trend across all three brain regions, with peak increases observed during deep torpor, suggesting a crucial role for this protein during hibernation. Furthermore, all three regions of the brain showed increased phospho-protein abundance of pyruvate dehydrogenase at serine 232 during both deep torpor and interbout arousal, and serine 300 during interbout arousal only, whereas other phosphorylation sites showed a region-specific expression pattern. Information collected from these studies sheds light on the molecular controls governing insulin signaling and fuel utilization in the brain of hibernating ground squirrels.


Asunto(s)
Apoptosis , Encéfalo/metabolismo , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/síntesis química , Fosfoproteínas/síntesis química , Sciuridae/metabolismo , Animales , Glucógeno Sintasa Quinasa 3 beta/química , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Insulina/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo
7.
PLoS Genet ; 12(10): e1006361, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27776126

RESUMEN

SKN-1/Nrf are the primary antioxidant/detoxification response transcription factors in animals and they promote health and longevity in many contexts. SKN-1/Nrf are activated by a remarkably broad-range of natural and synthetic compounds and physiological conditions. Defining the signaling mechanisms that regulate SKN-1/Nrf activation provides insights into how cells coordinate responses to stress. Nrf2 in mammals is regulated in part by the redox sensor repressor protein named Keap1. In C. elegans, the p38 MAPK cascade in the intestine activates SKN-1 during oxidative stress by promoting its nuclear accumulation. Interestingly, we find variation in the kinetics of p38 MAPK activation and tissues with SKN-1 nuclear accumulation among different pro-oxidants that all trigger strong induction of SKN-1 target genes. Using genome-wide RNAi screening, we identify new genes that are required for activation of the core SKN-1 target gene gst-4 during exposure to the natural pro-oxidant juglone. Among 10 putative activators identified in this screen was skr-1/2, highly conserved homologs of yeast and mammalian Skp1, which function to assemble protein complexes. Silencing of skr-1/2 inhibits induction of SKN-1 dependent detoxification genes and reduces resistance to pro-oxidants without decreasing p38 MAPK activation. Global transcriptomics revealed strong correlation between genes that are regulated by SKR-1/2 and SKN-1 indicating a high degree of specificity. We also show that SKR-1/2 functions upstream of the WD40 repeat protein WDR-23, which binds to and inhibits SKN-1. Together, these results identify a novel p38 MAPK independent signaling mechanism that activates SKN-1 via SKR-1/2 and involves WDR-23.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Inactivación Metabólica/genética , Longevidad/genética , Proteínas Ligasas SKP Cullina F-box/genética , Receptores de Activinas Tipo I/genética , Animales , Antioxidantes/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/biosíntesis , Tracto Gastrointestinal/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/biosíntesis , Proteína 1 Asociada A ECH Tipo Kelch/genética , Fosforilación , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Ligasas SKP Cullina F-box/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-30343059

RESUMEN

Hibernating mammals use strong metabolic rate depression and a reduction in body temperature to near-ambient to survive the cold winter months. During torpor, protein synthesis is suppressed but can resume during interbout arousals. The current study aimed to identify molecular targets responsible for the global suppression of protein synthesis during torpor as well as possible mechanisms that could allow for selective protein translation to continue over this time. Relative changes in protein expression and/or phosphorylation levels of key translation factors (ribosomal protein S6, eIF4E, eIF2α, eEF2) and their upstream regulators (mTOR, TSC2, p70 S6K, 4EBP) were analyzed in liver and kidney of 13-lined ground squirrels (Ictidomys tridecemlineatus) sampled from six points over the torpor-arousal cycle. The results indicate that both organs reduce protein synthesis during torpor by decreasing mTOR and TSC2 phosphorylation between 30 and 70% of control levels. Translation resumes during interbout arousal when p-p70 S6K, p-rpS6, and p-4EBP levels returned to control values or above. Only liver translation factors were activated or disinhibited during periods of torpor itself, with >3-fold increases in total eIF2α and eEF2 protein levels, and a decrease in p-eEF2 (T56) to as low as 16% of the euthermic control value. These data shed light on a possible molecular mechanism involving eIF2α that could enable the translation of key transcripts during times of cell stress.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Sciuridae/fisiología , Letargo , Animales , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Sciuridae/metabolismo
9.
Mol Cell Biochem ; 439(1-2): 151-161, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28780752

RESUMEN

Mammalian hibernation is a state of dormancy that is used by some animals to survive through the unfavorable conditions of winter, and is characterized by coordinated suppression of basal metabolism that is supported by global inhibition of energy/ATP-consuming processes. In this study, we examine the regulation of the anti-proliferatory TGF-ß/Smad transcription factor signaling pathway in the liver tissue of the hibernating 13-lined ground squirrel Ictidomys tridecemlineatus. The TGF-ß/Smad signaling pathway is known to mediate cell cycle arrest through induction of cell cycle dependent kinase inhibitors, and more recently, has been shown to regulate a wide range of cellular processes via its control of microRNA biosynthesis. We show that phosphorylation levels of the Smad3 protein at its activation residue is increased by ~1.5-fold during torpor, and this is associated with an increase in nuclear localization and DNA binding activity of Smad3. Expression levels of several TGF-ß induced microRNAs previously described in human cells were also activated in ground squirrel during torpor. Among these were miR-21, miR-23a, and miR-107, which contain either the conserved R-SBE or R-SBE related motif found in microRNAs that are post-transcriptionally processed by Smad proteins. We show that levels of miR-21 were highly elevated at multiple stages of torpor, and predicted gene targets of miR-21 were enriched to multiple pro-growth cellular processes. Overall, we provide evidence that show the Smad3 transcription factor is activated in ground squirrels during torpor, and suggest a role for this signaling pathway in mediating anti-proliferatory signals via its transcriptional control of cell cycle inhibitors and downstream microRNAs.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Hibernación/fisiología , MicroARNs/biosíntesis , Sciuridae/metabolismo , Proteína smad3/metabolismo , Animales
10.
Biochem Cell Biol ; 95(6): 663-671, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28708941

RESUMEN

Estivation is an adaptive stress response utilized by some amphibians during periods of drought in the summer season. In this study, we examine the regulation of the insulin signaling cascade and glycolysis pathway in the African clawed frog Xenopus laevis during the dehydration stress induced state of estivation. We show that in the brain and heart of X. laevis, dehydration reduces the phosphorylation of the insulin growth factor-1 receptor (IGF-1R), and this is followed by similar reductions in the phosphorylation of the Akt and mechanistic target of rapamycin (mTOR) kinase. Interestingly, phosphorylation levels of IGF-1R and mTOR were not affected in the kidney, and phosphorylation levels of P70S6K and the ribosomal S6 protein were elevated during dehydration stress. Animals under estivation are also susceptible to periods of hypoxia, suggesting that glycolysis may also be affected. We observed that protein levels of many glycolytic enzymes remained unchanged during dehydration; however, the hypoxia response factor-1 alpha (HIF-1α) protein was elevated by greater than twofold in the heart during dehydration. Overall, we provide evidence that shows that the insulin signaling pathway in X. laevis is regulated in a tissue-specific manner during dehydration stress and suggests an important role for this signaling cascade in mediating the estivation response.


Asunto(s)
Insulina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Animales , Encéfalo/metabolismo , Deshidratación , Glucólisis , Corazón , Riñón/metabolismo , Estrés Oxidativo , Xenopus laevis
11.
Physiol Genomics ; 48(6): 388-96, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27084747

RESUMEN

Hibernation is a highly regulated stress response that is utilized by some mammals to survive harsh winter conditions and involves a complex metabolic reprogramming at the cellular level to maintain tissue protections at low temperature. In this study, we profiled the expression of 117 conserved microRNAs in the heart, muscle, and liver of the 13-lined ground squirrel (Ictidomys tridecemlineatus) across four stages of the torpor-arousal cycle (euthermia, early torpor, late torpor, and interbout arousal) by real-time PCR. We found significant differential regulation of numerous microRNAs that were both tissue specific and torpor stage specific. Among the most significant regulated microRNAs was miR-208b, a positive regulator of muscle development that was found to be upregulated by fivefold in the heart during late torpor (13-fold during arousal), while decreased by 3.7-fold in the skeletal muscle, implicating a potential regulatory role in the development of cardiac hypertrophy and skeletal muscle atrophy in the ground squirrels during torpor. In addition, the insulin resistance marker miR-181a was upregulated by 5.7-fold in the liver during early torpor, which supports previous suggestions of hyperinsulinemia in hibernators during the early stages of the hibernation cycle. Although microRNA expression profiles were largely unique between the three tissues, GO annotation analysis revealed that the putative targets of upregulated microRNAs tend to enrich toward suppression of progrowth-related processes in all three tissues. These findings implicate microRNAs in the regulation of both tissue-specific processes and general suppression of cell growth during hibernation.


Asunto(s)
Nivel de Alerta/genética , Hibernación/genética , Mamíferos/genética , MicroARNs/genética , Sciuridae/genética , Letargo/genética , Animales , Nivel de Alerta/fisiología , Biomarcadores/metabolismo , Corazón/fisiología , Hibernación/fisiología , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Hígado/fisiología , Mamíferos/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Músculos/metabolismo , Músculos/fisiología , Sciuridae/fisiología , Letargo/fisiología
12.
Biochim Biophys Acta ; 1850(11): 2196-202, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26189697

RESUMEN

BACKGROUND: The insulin signaling pathway functions as a major regulator of many metabolic and cellular functions, and has been shown to be reversibly suppressed in many species during hibernation. This study characterized the regulation of PTEN phosphatase, a negative regulator of the insulin receptor network, over the torpor-arousal cycle of hibernation in the skeletal muscle of Ictidomys tridecemlineatus. METHODS: Western blotting and RT-PCR were used to analyze post-translational and transcriptional regulations of PTEN respectively. Enzymatic activities were determined by the malachite green assay, while protein stability was assessed the using pulse-proteolysis method. RESULTS: During torpor, the ratio of non-phosphorylated PTEN (S380/T382/T383) was significantly elevated by 1.4-fold during late torpor compared with euthermic controls; this was coupled with an increase in substrate affinity for PIP3 (by 56%) in late torpor. Two proteolytic cleavage PEST motifs were identified in the C-terminus that overlapped with the phosphorylation sites of PTEN; pulse-proteolysis analysis of PTEN protein showed a decrease in protein stability during late torpor (Cm of urea decreased by 21%). Furthermore, the increase in PTEN activity observed was correlated with a decrease in PDK-1 phosphorylation by 32%, suggesting a downstream effect of PTEN activation during torpor. Transcriptional analysis showed that mRNA expression of pten and pdk-1 remain unchanged during hibernation, suggesting post-translation modification as the primary regulatory mechanism of PTEN function. CONCLUSION: Phosphorylation plays an important role in the regulation of PTEN enzymatic activity and protein stability. GENERAL SIGNIFICANCE: Activation of PTEN during torpor can regulate insulin signaling during periods of low energy state.


Asunto(s)
Biocatálisis , Fosfohidrolasa PTEN/fisiología , Sciuridae/metabolismo , Secuencia de Aminoácidos , Animales , Hibernación/fisiología , Datos de Secuencia Molecular , Fosfohidrolasa PTEN/química , Fosforilación , Proteínas Serina-Treonina Quinasas/fisiología , Estabilidad Proteica , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora
13.
Nanotechnology ; 27(35): 355708, 2016 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-27456430

RESUMEN

To cut soft materials such as biological tissues with minimal damage and reduced positional error is highly desired in medical surgery and biomechanics. After years of natural selection and evolution, mosquitoes have acquired the ability to insert their proboscises into human skin with astonishingly tiny forces. This can be associated with the unique structure of their proboscises, with micro/nano sawteeth, and the distinctive insertion manner: high frequency reciprocating saw cutting. Inspired by these, this communication describes the successful implantation of metal oxide particles onto molybdenum wire surfaces through a sol-calcination process, to form a biomimetic sawblade with a high density of micro/nano saw teeth, where the acidification is essential in terms of generating active anchoring sites on the wire. When used as a sawblade in conjunction with reciprocating action to cut the viscoelastic gel, both the cut-in force and cut-in displacement could be decreased substantially. The cutting speed and frequency of reciprocating action are important operating parameters influencing cut-in force.

14.
Anal Biochem ; 462: 32-4, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24929089

RESUMEN

This study makes a significant advancement on a microRNA amplification technique previously used for expression analysis and sequencing in animal models without annotated mature microRNA sequences. As research progresses into the post-genomic era of microRNA prediction and analysis, the need for a rapid and cost-effective method for microRNA amplification is critical to facilitate wide-scale analysis of microRNA expression. To facilitate this requirement, we have reoptimized the design of amplification primers and introduced a polyadenylation step to allow amplification of all mature microRNAs from a single RNA sample. Importantly, this method retains the ability to sequence reverse transcription polymerase chain reaction (RT-PCR) products, validating microRNA-specific amplification.


Asunto(s)
Secuencias Invertidas Repetidas/genética , MicroARNs/biosíntesis , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Tejido Adiposo Pardo/metabolismo , Animales , Secuencia de Bases , Humanos , Ratones , MicroARNs/genética , Modelos Animales
15.
Mol Cell Biochem ; 390(1-2): 185-95, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24493314

RESUMEN

The torpor-arousal cycle of mammalian hibernation is characterized by drastic changes in physiological state that are supported by reprogramming of metabolic functions. The entrance and arousal phases of the cycle function as transitional stages, where major changes in oxygen metabolism take place. Acute changes in oxygen delivery can lead to either ischemia-related injuries during torpor induction or reperfusion damage during arousal. This study examines the regulation of the forkhead box O3 (FoxO3) transcription factor, which functions to increase cellular cytoprotection in response to oxidative stress stimuli. Immunoblots show that total expression of FoxO3a was elevated during early torpor (ET) and late torpor by 3.6- and 4.5-fold, respectively, compared to euthermic control. However, enhanced phosphorylation of FoxO3a at Thr-32 was only evident during ET by 1.5-fold, accompanied by increased phosphorylation of c-Jun N-terminal kinases by 1.2-fold. During ET, increased nuclear inclusion of FoxO3a was evident along with its transcriptional co-activator ß-catenin by 1.9- and 2.7-fold, respectively. As well, FoxO3a DNA binding was elevated by 1.8-fold during ET, along with increased expression of FoxO3a downstream genes catalase, p27, and cyclin G 2 , by 1.4-, 1.6-, and 1.3-fold, respectively. Overall, the results indicate activation of FoxO3a during ET, suggesting a role of FoxO3a in response to cellular stress during hibernation.


Asunto(s)
Factores de Transcripción Forkhead/genética , Hibernación/genética , Estrés Fisiológico/genética , Letargo/fisiología , Animales , Factores de Transcripción Forkhead/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Hibernación/fisiología , Mamíferos , Fosforilación , Sciuridae/genética , Sciuridae/fisiología , Estrés Fisiológico/fisiología , Letargo/genética , beta Catenina/metabolismo
16.
ACS Chem Biol ; 19(5): 1180-1193, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38652683

RESUMEN

C. elegans numr-1/2 (nuclear-localized metal-responsive) is an identical gene pair encoding a nuclear protein previously shown to be activated by cadmium and disruption of the integrator RNA metabolism complex. We took a chemical genetic approach to further characterize regulation of this novel metal response by screening 41,716 compounds and extracts for numr-1p::GFP activation. The most potent activator was chaetocin, a fungal 3,6-epidithiodiketopiperazine (ETP) with promising anticancer activity. Chaetocin activates numr-1/2 strongly in the alimentary canal but is distinct from metal exposure, because it represses canonical cadmium-responsive metallothionine genes. Chaetocin has diverse targets in cancer cells including thioredoxin reductase, histone lysine methyltransferase, and acetyltransferase p300/CBP; further work is needed to identify the mechanism in C. elegans as genetic disruption and RNAi screening of homologues did not induce numr-1/2 in the alimentary canal and chaetocin did not affect markers of integrator dysfunction. We demonstrate that disulfides in chaetocin and chetomin, a dimeric ETP analog, are required to induce numr-1/2. ETP monomer gliotoxin, despite possessing a disulfide linkage, had almost no effect on numr-1/2, suggesting a dimer requirement. Chetomin inhibits C. elegans growth at low micromolar levels, and loss of numr-1/2 increases sensitivity; C. elegans and Chaetomiaceae fungi inhabit similar environments raising the possibility that numr-1/2 functions as a defense mechanism. There is no direct orthologue of numr-1/2 in humans, but RNaseq suggests that chaetocin affects expression of cellular processes linked to stress response and metal homeostasis in colorectal cancer cells. Our results reveal interactions between metal response gene regulation and ETPs and identify a potential mechanism of resistance to this versatile class of preclinical compounds.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Homeostasis , Micotoxinas , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Micotoxinas/farmacología , Micotoxinas/metabolismo , Homeostasis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Piperazinas/farmacología , Piperazinas/química , Humanos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Cadmio/farmacología
17.
Cryobiology ; 66(3): 267-74, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23499617

RESUMEN

Hibernation is used by many small mammals for winter survival. Animals undergo cycles of deep torpor characterized by strong reductions in metabolic rate, body temperature, and all physiological activities. One prominent biochemical mechanism involved in regulating coordinated transitions to and from the hypometabolic state is reversible protein phosphorylation, a dynamic covalent modification maintained by the actions of protein kinases and protein phosphatases. The present study characterizes protein phosphatase type 2A (PP2A) from liver and skeletal muscle of Richardson's ground squirrels, Urocitellus richardsonii, to determine if the properties of this enzyme are modified between euthermic and hibernating states to provide differential control of the enzyme or its target proteins. Kinetic analysis showed a significant 1.5-fold increase in the Km for the synthetic phosphorylated peptide substrate (RRApTVA) for PP2A from skeletal muscle (but not liver) of torpid ground squirrels, as compared with euthermic controls, when measured at both 25 °C and 5 °C. This correlated with enhanced phosphorylation of PP2Aα Tyr-307 (a 2.3-fold increase) during hibernation in skeletal muscle (but not liver), a modification known to inhibit PP2A action. Hence, both kinetic and phosphorylation data suggest a suppression of PP2A function in the torpid state in skeletal muscle. However, total PP2A protein levels (assessed by immunoblotting) and maximal activities did not change in either tissue between euthermic and hibernating states. Liver PP2A from hibernating animals showed a broader pH profile with high activity retained at lower pH values (6.0-6.5) than the euthermic enzyme which might aid enzyme function in vivo under conditions of respiratory acidosis during torpor.


Asunto(s)
Hibernación , Proteína Fosfatasa 2/metabolismo , Sciuridae/fisiología , Secuencia de Aminoácidos , Animales , Cinética , Hígado/metabolismo , Datos de Secuencia Molecular , Músculo Esquelético/metabolismo , Fosforilación , Proteína Fosfatasa 2/análisis
18.
Artículo en Inglés | MEDLINE | ID: mdl-23376623

RESUMEN

Much research in comparative biochemistry is focused on understanding the molecular mechanisms that allow organisms to adapt to and survive diverse environmental challenges. In recent years, genomic and proteomic approaches have been key drivers of advancement in the field, for example, providing knowledge about gene and protein expression, regulation of signal transduction pathways, and functional control of enzymes/proteins by reversible protein phosphorylation. Advances in comparative biochemistry have always drawn upon conceptual and technological advances that arise from "mainline" biochemistry and molecular biology, often from medical models. The present article discusses three such advances that will have major impacts on comparative biochemistry in the 21st century. The first is the crucial role of posttranslational modification in metabolic control, expanding outwards from reversible phosphorylation to explore the individual and interacting effects of protein modification by acetylation, methylation, SUMOylation and O-GlcNAcylation, among others. The second is the newly recognized role of non-coding RNA in the regulation of gene expression, particularly the action of microRNAs. The third is the emergence of powerful multiplex technology that allows rapid, high-throughput detection of analytes and will revolutionize RNA and protein profiling in the comparative biochemistry laboratory. Commercial tools such as Luminex allow researchers to simultaneously quantify up to 100 different analytes in a single sample, thereby creating broad functional analyses of metabolism and cell signaling pathways.


Asunto(s)
Adaptación Fisiológica/genética , MicroARNs/genética , Procesamiento Proteico-Postraduccional , ARN no Traducido/genética , Regulación de la Expresión Génica , Interacción Gen-Ambiente , Humanos , Transducción de Señal , Estrés Fisiológico/genética
19.
J Infect Dis ; 206(3): 341-51, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22615319

RESUMEN

A scarlet fever outbreak occurred in Hong Kong in 2011. The majority of cases resulted in the isolation of Streptococcus pyogenes emm12 with multiple antibiotic resistances. Phylogenetic analysis of 22 emm12 scarlet fever outbreak isolates, 7 temporally and geographically matched emm12 non-scarlet fever isolates, and 18 emm12 strains isolated during 2005-2010 indicated the outbreak was multiclonal. Genome sequencing of 2 nonclonal scarlet fever isolates (HKU16 and HKU30), coupled with diagnostic polymerase chain reaction assays, identified 2 mobile genetic elements distributed across the major lineages: a 64.9-kb integrative and conjugative element encoding tetracycline and macrolide resistance and a 46.4-kb prophage encoding superantigens SSA and SpeC and the DNase Spd1. Phenotypic comparison of HKU16 and HKU30 with the S. pyogenes M1T1 strain 5448 revealed that HKU16 displays increased adherence to HEp-2 human epithelial cells, whereas HKU16, HKU30, and 5448 exhibit equivalent resistance to neutrophils and virulence in a humanized plasminogen murine model. However, in contrast to M1T1, the virulence of HKU16 and HKU30 was not associated with covRS mutation. The multiclonal nature of the emm12 scarlet fever isolates suggests that factors such as mobile genetic elements, environmental factors, and host immune status may have contributed to the 2011 scarlet fever outbreak.


Asunto(s)
Brotes de Enfermedades , Escarlatina/epidemiología , Escarlatina/microbiología , Streptococcus pyogenes/clasificación , Streptococcus pyogenes/genética , Adolescente , Adulto , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Niño , Preescolar , Femenino , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/fisiología , Genoma Bacteriano , Genómica , Hong Kong/epidemiología , Humanos , Lactante , Secuencias Repetitivas Esparcidas , Masculino , Persona de Mediana Edad , Epidemiología Molecular , Fenotipo , Filogenia , Streptococcus pyogenes/efectos de los fármacos
20.
G3 (Bethesda) ; 13(12)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37852248

RESUMEN

Posttranscriptional splicing of premessenger RNA (mRNA) is an evolutionarily conserved eukaryotic process for producing mature mRNA that is translated into proteins. Accurate splicing is necessary for normal growth and development, and aberrant splicing is increasingly evident in various human pathologies. To study environmental factors that influence RNA splicing, we employed a fluorescent Caenorhabditis elegans in vivo splicing reporter as a biomarker for splicing fidelity to screen against the US EPA ToxCast chemical library. We identified pararosaniline hydrochloride as a strong modifier of RNA splicing. Through gene expression analysis, we found that pararosaniline activates the oxidative stress response and alters the expression of key RNA splicing regulator genes. Physiological assays show that pararosaniline is deleterious to C. elegans development, reproduction, and aging. Through a targeted RNAi screen, we found that inhibiting protein translation can reverse pararosaniline's effect on the splicing reporter and provide significant protection against long-term pararosaniline toxicity. Together, this study reveals a new chemical modifier of RNA splicing and describes translation inhibition as a genetic mechanism to provide resistance.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Empalme del ARN/genética , ARN Mensajero/genética , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA