Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Biol ; 18(8): e3000838, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32804933

RESUMEN

In humans, most germline mutations are inherited from the father. This observation has been widely interpreted as reflecting the replication errors that accrue during spermatogenesis. If so, the male bias in mutation should be substantially lower in a closely related species with similar rates of spermatogonial stem cell divisions but a shorter mean age of reproduction. To test this hypothesis, we resequenced two 3-4 generation nuclear families (totaling 29 individuals) of olive baboons (Papio anubis), who reproduce at approximately 10 years of age on average, and analyzed the data in parallel with three 3-generation human pedigrees (26 individuals). We estimated a mutation rate per generation in baboons of 0.57×10-8 per base pair, approximately half that of humans. Strikingly, however, the degree of male bias in germline mutations is approximately 4:1, similar to that of humans-indeed, a similar male bias is seen across mammals that reproduce months, years, or decades after birth. These results mirror the finding in humans that the male mutation bias is stable with parental ages and cast further doubt on the assumption that germline mutations track cell divisions. Our mutation rate estimates for baboons raise a further puzzle, suggesting a divergence time between apes and Old World monkeys of 65 million years, too old to be consistent with the fossil record; reconciling them now requires not only a slowdown of the mutation rate per generation in humans but also in baboons.


Asunto(s)
Mutación de Línea Germinal , Hominidae/genética , Tasa de Mutación , Papio/genética , Reproducción/genética , Espermatozoides/metabolismo , Factores de Edad , Animales , Evolución Biológica , División Celular , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Modelos Genéticos , Linaje , Factores Sexuales , Especificidad de la Especie , Espermatogénesis/genética , Espermatozoides/citología
2.
Elife ; 112022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35916372

RESUMEN

In humans and other mammals, germline mutations are more likely to arise in fathers than in mothers. Although this sex bias has long been attributed to DNA replication errors in spermatogenesis, recent evidence from humans points to the importance of mutagenic processes that do not depend on cell division, calling into question our understanding of this basic phenomenon. Here, we infer the ratio of paternal-to-maternal mutations, α, in 42 species of amniotes, from putatively neutral substitution rates of sex chromosomes and autosomes. Despite marked differences in gametogenesis, physiologies and environments across species, fathers consistently contribute more mutations than mothers in all the species examined, including mammals, birds, and reptiles. In mammals, α is as high as 4 and correlates with generation times; in birds and snakes, α appears more stable around 2. These observations are consistent with a simple model, in which mutations accrue at equal rates in both sexes during early development and at a higher rate in the male germline after sexual differentiation, with a conserved paternal-to-maternal ratio across species. Thus, α may reflect the relative contributions of two or more developmental phases to total germline mutations, and is expected to depend on generation time even if mutations do not track cell divisions.


Asunto(s)
Mutación de Línea Germinal , Hominidae , Animales , Aves/genética , División Celular/genética , Padre , Femenino , Hominidae/genética , Humanos , Masculino , Mamíferos/genética , Mutación , Cromosomas Sexuales
3.
Science ; 358(6369): 1457-1461, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29170279

RESUMEN

Although dynamics underlie many biological processes, our ability to robustly and accurately profile time-varying biological signals and regulatory programs remains limited. Here we describe a framework for storing temporal biological information directly in the genomes of a cell population. We developed a "biological tape recorder" in which biological signals trigger intracellular DNA production that is then recorded by the CRISPR-Cas adaptation system. This approach enables stable recording over multiple days and accurate reconstruction of temporal and lineage information by sequencing CRISPR arrays. We further demonstrate a multiplexing strategy to simultaneously record the temporal availability of three metabolites (copper, trehalose, and fucose) in the environment of a cell population over time. This work enables the temporal measurement of dynamic cellular states and environmental changes and suggests new applications for chronicling biological events on a large scale.


Asunto(s)
Sistemas CRISPR-Cas , Células/metabolismo , Almacenamiento y Recuperación de la Información/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos , Cobre/metabolismo , ADN/biosíntesis , Fucosa/metabolismo , Trehalosa/metabolismo
4.
J Exp Med ; 214(10): 2915-2932, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-28855242

RESUMEN

Infants suffer disproportionately from respiratory infections and generate reduced vaccine responses compared with adults, although the underlying mechanisms remain unclear. In adult mice, lung-localized, tissue-resident memory T cells (TRMs) mediate optimal protection to respiratory pathogens, and we hypothesized that reduced protection in infancy could be due to impaired establishment of lung TRM. Using an infant mouse model, we demonstrate generation of lung-homing, virus-specific T effectors after influenza infection or live-attenuated vaccination, similar to adults. However, infection during infancy generated markedly fewer lung TRMs, and heterosubtypic protection was reduced compared with adults. Impaired TRM establishment was infant-T cell intrinsic, and infant effectors displayed distinct transcriptional profiles enriched for T-bet-regulated genes. Notably, mouse and human infant T cells exhibited increased T-bet expression after activation, and reduction of T-bet levels in infant mice enhanced lung TRM establishment. Our findings reveal that infant T cells are intrinsically programmed for short-term responses, and targeting key regulators could promote long-term, tissue-targeted protection at this critical life stage.


Asunto(s)
Pulmón/citología , Linfocitos T/fisiología , Factores de Edad , Animales , Animales Recién Nacidos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/fisiología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/fisiología , Femenino , Humanos , Memoria Inmunológica , Lactante , Vacunas contra la Influenza/inmunología , Pulmón/inmunología , Activación de Linfocitos/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/inmunología , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA