Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(20): e2219699120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155865

RESUMEN

Kidney organoids differentiated from pluripotent stem cells are powerful models of kidney development and disease but are characterized by cell immaturity and off-target cell fates. Comparing the cell-specific gene regulatory landscape during organoid differentiation with human adult kidney can serve to benchmark progress in differentiation at the epigenome and transcriptome level for individual organoid cell types. Using single-cell multiome and histone modification analysis, we report more broadly open chromatin in organoid cell types compared to the human adult kidney. We infer enhancer dynamics by cis-coaccessibility analysis and validate an enhancer driving transcription of HNF1B by CRISPR interference both in cultured proximal tubule cells and also during organoid differentiation. Our approach provides an experimental framework to judge the cell-specific maturation state of human kidney organoids and shows that kidney organoids can be used to validate individual gene regulatory networks that regulate differentiation.


Asunto(s)
Riñón , Multiómica , Humanos , Diferenciación Celular/genética , Células Cultivadas , Organoides/metabolismo , Análisis de la Célula Individual
2.
Am J Physiol Renal Physiol ; 326(5): F827-F838, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38482555

RESUMEN

In the aftermath of acute kidney injury (AKI), surviving proximal tubule epithelia repopulate injured tubules to promote repair. However, a portion of cells fail to repair [termed failed-repair proximal tubule cells (FR-PTCs)] and exert ongoing proinflammatory and profibrotic effects. To better understand the molecular drivers of the FR-PTC state, we reanalyzed a mouse ischemia-reperfusion injury single-nucleus RNA-sequencing (snRNA-seq) atlas to identify Traf2 and Nck interacting kinase (Tnik) to be exclusively expressed in FR-PTCs but not in healthy or acutely injured proximal tubules after AKI (2 and 6 wk) in mice. We confirmed expression of Tnik protein in injured mouse and human tissues by immunofluorescence. Then, to determine the functional role of Tnik in FR-PTCs, we depleted TNIK with siRNA in two human renal proximal tubule epithelial cell lines (primary and immortalized hRPTECs) and analyzed each by bulk RNA-sequencing. Pathway analysis revealed significant upregulation of inflammatory signaling pathways, whereas pathways associated with differentiated proximal tubules such as organic acid transport were significantly downregulated. TNIK gene knockdown drove reduced cell viability and increased apoptosis, including differentially expressed poly(ADP-ribose) polymerase (PARP) family members, cleaved PARP-1 fragments, and increased annexin V binding to phosphatidylserine. Together, these results indicate that Tnik upregulation in FR-PTCs acts in a compensatory fashion to suppress inflammation and promote proximal tubule epithelial cell survival after injury. Modulating TNIK activity may represent a prorepair therapeutic strategy after AKI.NEW & NOTEWORTHY The molecular drivers of successful and failed repair in the proximal tubule after acute kidney injury (AKI) are incompletely understood. We identified Traf2 and Nck interacting kinase (Tnik) to be exclusively expressed in failed-repair proximal tubule cells after AKI. We tested the effect of siTNIK depletion in two proximal tubule cell lines followed by bulk RNA-sequencing analysis. Our results indicate that TNIK acts to suppress inflammatory signaling and apoptosis in injured renal proximal tubule epithelial cells to promote cell survival.


Asunto(s)
Lesión Renal Aguda , Apoptosis , Células Epiteliales , Túbulos Renales Proximales , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Animales , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Factor 2 Asociado a Receptor de TNF/metabolismo , Factor 2 Asociado a Receptor de TNF/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/genética , Transducción de Señal , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Línea Celular , Inflamación/metabolismo , Inflamación/patología , Masculino
3.
Kidney Int ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901605

RESUMEN

Vascularization plays a critical role in organ maturation and cell-type development. Drug discovery, organ mimicry, and ultimately transplantation hinge on achieving robust vascularization of in vitro engineered organs. Here, focusing on human kidney organoids, we overcame this hurdle by combining a human induced pluripotent stem cell (iPSC) line containing an inducible ETS translocation variant 2 (ETV2) (a transcription factor playing a role in endothelial cell development) that directs endothelial differentiation in vitro, with a non-transgenic iPSC line in suspension organoid culture. The resulting human kidney organoids show extensive endothelialization with a cellular identity most closely related to human kidney endothelia. Endothelialized kidney organoids also show increased maturation of nephron structures, an associated fenestrated endothelium with de novo formation of glomerular and venous subtypes, and the emergence of drug-responsive renin expressing cells. The creation of an engineered vascular niche capable of improving kidney organoid maturation and cell type complexity is a significant step forward in the path to clinical translation. Thus, incorporation of an engineered endothelial niche into a previously published kidney organoid protocol allowed the orthogonal differentiation of endothelial and parenchymal cell types, demonstrating the potential for applicability to other basic and translational organoid studies.

4.
Phys Chem Chem Phys ; 26(10): 8515-8527, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38411591

RESUMEN

Two-dimensional ferromagnetic materials with intrinsic half-metallic properties have strong application advantages in nanoscale spintronics. Herein, density functional theory calculations show that monolayer ScCl is a ferromagnetic metallic material when undoped (n = 0), and the transition from metal to half-metal occurs with the continuous doping of holes. On the contrary, as the concentration of doped electrons increases, the system will exhibit metallic characteristics, which is particularly evident from a variation in spin polarizability. Furthermore, we have discussed how doped carriers affect the shape of the Fermi surface and the Fermi velocity of electrons. Most importantly, Monte Carlo simulations show that the ScCl monolayer is particularly regulated by carrier concentration (n) and magnetic field (h). Additionally, trends in energy and magnetic exchange coupling in different magnetic configurations (AFM phase and FM phase) with different doping concentrations are presented. When n < -0.16, the material is not only a half-metallic material that easily flips the magnetic axis, but also proves to be a candidate ferromagnetic material that works stably at room temperature in terms of dynamic stability. In addition, the origin of magnetocrystalline anisotropy is analyzed, and the contribution of different orbitals to spin-orbit coupling is presented. Moreover, we note that when magnetic field is small (h < 1 T), the change in size has a significant effect on ferromagnetic phase transition. However, when the system size is large (size >15 nm), TC is less sensitive to magnetic field. In addition, hole doping and size effect will greatly affect the hC of the system, but when the hole doping exceeds the critical value (n = -0.16), its influence on the hysteresis loop is no longer obvious. These interesting magnetic phenomena and easily adjustable physical properties show us that monolayer ScCl will be a promising functional material.

5.
J Am Soc Nephrol ; 34(4): 554-571, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36735940

RESUMEN

SIGNIFICANCE STATEMENT: Understanding the mechanisms underlying adaptive and maladaptive renal repair after AKI and their long-term consequences is critical to kidney health. The authors used lineage tracing of cycling cells and single-nucleus multiomics (profiling transcriptome and chromatin accessibility) after AKI. They demonstrated that AKI triggers a cell-cycle response in most epithelial and nonepithelial kidney cell types. They also showed that maladaptive proinflammatory proximal tubule cells (PTCs) persist until 6 months post-AKI, although they decreased in abundance over time, in part, through cell death. Single-nucleus multiomics of lineage-traced cells revealed regulatory features of adaptive and maladaptive repair. These included activation of cell state-specific transcription factors and cis-regulatory elements, and effects in PTCs even after adaptive repair, weeks after the injury event. BACKGROUND: AKI triggers a proliferative response as part of an intrinsic cellular repair program, which can lead to adaptive renal repair, restoring kidney structure and function, or maladaptive repair with the persistence of injured proximal tubule cells (PTCs) and an altered kidney structure. However, the cellular and molecular understanding of these repair programs is limited. METHODS: To examine chromatin and transcriptional responses in the same cell upon ischemia-reperfusion injury (IRI), we combined genetic fate mapping of cycling ( Ki67+ ) cells labeled early after IRI with single-nucleus multiomics-profiling transcriptome and chromatin accessibility in the same nucleus-and generated a dataset of 83,315 nuclei. RESULTS: AKI triggered a broad cell cycle response preceded by cell type-specific and global transcriptional changes in the nephron, the collecting and vascular systems, and stromal and immune cell types. We observed a heterogeneous population of maladaptive PTCs throughout proximal tubule segments 6 months post-AKI, with a marked loss of maladaptive cells from 4 weeks to 6 months. Gene expression and chromatin accessibility profiling in the same nuclei highlighted differences between adaptive and maladaptive PTCs in the activity of cis-regulatory elements and transcription factors, accompanied by corresponding changes in target gene expression. Adaptive repair was associated with reduced expression of genes encoding transmembrane transport proteins essential to kidney function. CONCLUSIONS: Analysis of genome organization and gene activity with single-cell resolution using lineage tracing and single-nucleus multiomics offers new insight into the regulation of renal injury repair. Weeks to months after mild-to-moderate IRI, maladaptive PTCs persist with an aberrant epigenetic landscape, and PTCs exhibit an altered transcriptional profile even following adaptive repair.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Humanos , Multiómica , Riñón/metabolismo , Lesión Renal Aguda/metabolismo , Daño por Reperfusión/metabolismo , Factores de Transcripción/genética , Cromatina/genética
6.
Asia Pac J Clin Nutr ; 33(1): 83-93, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38494690

RESUMEN

BACKGROUND AND OBJECTIVES: To explore the risk factors for non-alcoholic fatty liver disease (NAFLD) and to establish a non-invasive tool for the screening of NAFLD in an older adult population. METHODS AND STUDY DESIGN: A total of 131,161 participants were included in this cross-sectional study. Participants were randomly divided into training and validation sets (7:3). The least absolute shrinkage and selection operator method was used to screen risk factors. Multivariate logistic regression was employed to develop a nomogram, which was made available online. Receiver operating characteristic curve analysis, calibration plots, and decision curve analysis were used to validate the discrimination, calibration, and clinical practicability of the nomogram. Sex and age subgroup analyses were conducted to further validate the reliability of the model. RESULTS: Nine variables were identified for inclusion in the nomogram (age, sex, waist circumference, body mass index, exercise frequency, systolic blood pressure, fasting plasma glucose, alanine aminotransferase, and low-density lipoprotein cholesterol). The area under the receiver operating characteristic curve values were 0.793 and 0.790 for the training set and the validation set, respectively. The calibration plots and decision curve analyses showed good calibration and clinical utility. Subgroup analyses demonstrated consistent discriminatory ability in different sex and age subgroups. CONCLUSIONS: This study established and validated a new nomogram model for evaluating the risk of NAFLD among older adults. The nomogram had good discriminatory performance and is a non-invasive and convenient tool for the screening of NAFLD in older adults.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Anciano , Humanos , China/epidemiología , Estudios Transversales , Nomogramas , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Reproducibilidad de los Resultados , Factores de Riesgo
7.
Phys Chem Chem Phys ; 25(14): 10143-10154, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36974982

RESUMEN

The structural, electronic, and magnetic properties of vanadium disulfide VS2 monolayers were investigated using first-principles calculations and Monte Carlo (MC) simulations. The results of molecular dynamics simulations and phonon dispersion showed that the VS2 monolayer has good dynamic and thermodynamic stabilities. Based on the results of the band structure, we also explore the effect of carrier concentrations on the spin gap, spin polarization and the direction of the easy magnetic axis. Our results demonstrated that doping an appropriate amount of holes can cause the reversal of the easy magnetic axis and maintain nearly 100% spin polarization, which greatly improves the application possibility of the VS2 monolayer as a spintronic device. The contribution of different orbits to the spin-orbit coupling (SOC) effect is given in magnetocrystalline anisotropy energy, which provides a theoretical basis for explaining the origin of magnetic crystal anisotropy. Based on the MC simulations, we also showed the influences of different parameters (carrier concentrations, magnetic field and crystal field) on the magnetothermal properties of the VS2 monolayer. It is found that the increase of hole doping concentrations can promote the increase of the Curie temperature, while the increase of electron doping concentrations will greatly weaken the Curie temperature. Furthermore, according to the influences of different parameters on the Curie temperature and spin polarization, we conclude that a suitably enhanced magnetic field and appropriate hole concentrations will not only make the system maintain high spin polarization, but also make the system exhibit ferromagnetic properties above room temperature.

8.
Proc Natl Acad Sci U S A ; 117(27): 15874-15883, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32571916

RESUMEN

After acute kidney injury (AKI), patients either recover or alternatively develop fibrosis and chronic kidney disease. Interactions between injured epithelia, stroma, and inflammatory cells determine whether kidneys repair or undergo fibrosis, but the molecular events that drive these processes are poorly understood. Here, we use single nucleus RNA sequencing of a mouse model of AKI to characterize cell states during repair from acute injury. We identify a distinct proinflammatory and profibrotic proximal tubule cell state that fails to repair. Deconvolution of bulk RNA-seq datasets indicates that this failed-repair proximal tubule cell (FR-PTC) state can be detected in other models of kidney injury, increasing during aging in rat kidney and over time in human kidney allografts. We also describe dynamic intercellular communication networks and discern transcriptional pathways driving successful vs. failed repair. Our study provides a detailed description of cellular responses after injury and suggests that the FR-PTC state may represent a therapeutic target to improve repair.


Asunto(s)
Lesión Renal Aguda/metabolismo , Túbulos Renales Proximales/metabolismo , Riñón/metabolismo , Transcriptoma , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Aloinjertos , Animales , Modelos Animales de Enfermedad , Fibrosis , Redes Reguladoras de Genes , Humanos , Riñón/lesiones , Túbulos Renales Proximales/lesiones , Túbulos Renales Proximales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Análisis de Secuencia de ARN , Células del Estroma/metabolismo , Células del Estroma/patología
9.
J Am Soc Nephrol ; 33(2): 279-289, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34853151

RESUMEN

BACKGROUND: Single-cell sequencing technologies have advanced our understanding of kidney biology and disease, but the loss of spatial information in these datasets hinders our interpretation of intercellular communication networks and regional gene expression patterns. New spatial transcriptomic sequencing platforms make it possible to measure the topography of gene expression at genome depth. METHODS: We optimized and validated a female bilateral ischemia-reperfusion injury model. Using the 10× Genomics Visium Spatial Gene Expression solution, we generated spatial maps of gene expression across the injury and repair time course, and applied two open-source computational tools, Giotto and SPOTlight, to increase resolution and measure cell-cell interaction dynamics. RESULTS: An ischemia time of 34 minutes in a female murine model resulted in comparable injury to 22 minutes for males. We report a total of 16,856 unique genes mapped across our injury and repair time course. Giotto, a computational toolbox for spatial data analysis, enabled increased resolution mapping of genes and cell types. Using a seeded nonnegative matrix regression (SPOTlight) to deconvolute the dynamic landscape of cell-cell interactions, we found that injured proximal tubule cells were characterized by increasing macrophage and lymphocyte interactions even 6 weeks after injury, potentially reflecting the AKI to CKD transition. CONCLUSIONS: In this transcriptomic atlas, we defined region-specific and injury-induced loss of differentiation markers and their re-expression during repair, as well as region-specific injury and repair transcriptional responses. Lastly, we created an interactive data visualization application for the scientific community to explore these results (http://humphreyslab.com/SingleCell/).


Asunto(s)
Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Lesión Renal Aguda/fisiopatología , Animales , Comunicación Celular/genética , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/estadística & datos numéricos , Ratones , Ratones Endogámicos C57BL , RNA-Seq , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Daño por Reperfusión/fisiopatología , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/estadística & datos numéricos , Programas Informáticos
10.
Kidney Int ; 102(6): 1215-1216, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36411016

RESUMEN

Typical kidney single-cell RNA-sequencing contains relatively few leukocytes, complicating efforts to understand how immune cells impact kidney disease progression. In this issue, Fu et al. use a flow sorting strategy to generate a very large immune cell single-cell RNA-sequencing atlas in a mouse model of diabetic kidney disease. These findings highlight the importance of leukocyte cell subtypes in diabetic kidney disease.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/genética , Modelos Animales de Enfermedad , Riñón , Leucocitos , ARN
11.
Kidney Int ; 102(3): 482-491, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35788360

RESUMEN

Defining changes in gene expression during health and disease is critical for the understanding of human physiology. In recent years, single-cell/nuclei RNA sequencing (sc/snRNAseq) has revolutionized the definition and discovery of cell types and states as well as the interpretation of organ- and cell-type-specific signaling pathways. However, these advances require tissue dissociation to the level of the single cell or single nuclei level. Spatially resolved transcriptomics (SrT) now provides a platform to overcome this barrier in understanding the physiological contexts of gene expression and cellular microenvironment changes in development and disease. Some of these transcriptomic tools allow for high-resolution mapping of hundreds of genes simultaneously in cellular and subcellular compartments. Other tools offer genome depth mapping but at lower resolution. We review advances in SrT, considerations for using SrT in your own research, and applications for kidney biology.


Asunto(s)
Riñón , Transcriptoma , Microambiente Celular , Perfilación de la Expresión Génica , Humanos
12.
Proc Natl Acad Sci U S A ; 116(39): 19619-19625, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31506348

RESUMEN

Diabetic nephropathy is characterized by damage to both the glomerulus and tubulointerstitium, but relatively little is known about accompanying cell-specific changes in gene expression. We performed unbiased single-nucleus RNA sequencing (snRNA-seq) on cryopreserved human diabetic kidney samples to generate 23,980 single-nucleus transcriptomes from 3 control and 3 early diabetic nephropathy samples. All major cell types of the kidney were represented in the final dataset. Side-by-side comparison demonstrated cell-type-specific changes in gene expression that are important for ion transport, angiogenesis, and immune cell activation. In particular, we show that the diabetic thick ascending limb, late distal convoluted tubule, and principal cells all adopt a gene expression signature consistent with increased potassium secretion, including alterations in Na+/K+-ATPase, WNK1, mineralocorticoid receptor, and NEDD4L expression, as well as decreased paracellular calcium and magnesium reabsorption. We also identify strong angiogenic signatures in glomerular cell types, proximal convoluted tubule, distal convoluted tubule, and principal cells. Taken together, these results suggest that increased potassium secretion and angiogenic signaling represent early kidney responses in human diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Anciano , Calcio/metabolismo , Calcio/orina , Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/fisiopatología , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Riñón/metabolismo , Glomérulos Renales/metabolismo , Túbulos Renales Distales/metabolismo , Túbulos Renales Proximales/metabolismo , Magnesio/metabolismo , Magnesio/orina , Masculino , Persona de Mediana Edad , Potasio/metabolismo , Potasio/orina , Análisis de Secuencia de ARN , Análisis de la Célula Individual/métodos , Transcriptoma/genética
13.
Kidney Int ; 100(3): 672-683, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34051265

RESUMEN

Kidney fibrosis constitutes the shared final pathway of nearly all chronic nephropathies, but biomarkers for the non-invasive assessment of kidney fibrosis are currently not available. To address this, we characterize five candidate biomarkers of kidney fibrosis: Cadherin-11 (CDH11), Sparc-related modular calcium binding protein-2 (SMOC2), Pigment epithelium-derived factor (PEDF), Matrix-Gla protein, and Thrombospondin-2. Gene expression profiles in single-cell and single-nucleus RNA-sequencing (sc/snRNA-seq) datasets from rodent models of fibrosis and human chronic kidney disease (CKD) were explored, and Luminex-based assays for each biomarker were developed. Plasma and urine biomarker levels were measured using independent prospective cohorts of CKD: the Boston Kidney Biopsy Cohort, a cohort of individuals with biopsy-confirmed semiquantitative assessment of kidney fibrosis, and the Seattle Kidney Study, a cohort of patients with common forms of CKD. Ordinal logistic regression and Cox proportional hazards regression models were used to test associations of biomarkers with interstitial fibrosis and tubular atrophy and progression to end-stage kidney disease and death, respectively. Sc/snRNA-seq data confirmed cell-specific expression of biomarker genes in fibroblasts. After multivariable adjustment, higher levels of plasma CDH11, SMOC2, and PEDF and urinary CDH11 and PEDF were significantly associated with increasing severity of interstitial fibrosis and tubular atrophy in the Boston Kidney Biopsy Cohort. In both cohorts, higher levels of plasma and urinary SMOC2 and urinary CDH11 were independently associated with progression to end-stage kidney disease. Higher levels of urinary PEDF associated with end-stage kidney disease in the Seattle Kidney Study, with a similar signal in the Boston Kidney Biopsy Cohort, although the latter narrowly missed statistical significance. Thus, we identified CDH11, SMOC2, and PEDF as promising non-invasive biomarkers of kidney fibrosis.


Asunto(s)
Insuficiencia Renal Crónica , Biomarcadores , Cadherinas , Proteínas de Unión al Calcio , Progresión de la Enfermedad , Proteínas del Ojo , Fibrosis , Humanos , Riñón , Factores de Crecimiento Nervioso , Osteonectina/genética , Estudios Prospectivos , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/genética , Serpinas
14.
J Am Soc Nephrol ; 31(1): 23-38, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31537650

RESUMEN

BACKGROUND: Proximal tubule injury can initiate CKD, with progression rates that are approximately 50% faster in males versus females. The precise transcriptional changes in this nephron segment during fibrosis and potential differences between sexes remain undefined. METHODS: We generated mice with proximal tubule-specific expression of an L10a ribosomal subunit protein fused with enhanced green fluorescent protein. We performed unilateral ureteral obstruction surgery on four male and three female mice to induce inflammation and fibrosis, collected proximal tubule-specific and bulk cortex mRNA at day 5 or 10, and sequenced samples to a depth of 30 million reads. We applied computational methods to identify sex-biased and shared molecular responses to fibrotic injury, including up- and downregulated long noncoding RNAs (lncRNAs) and transcriptional regulators, and used in situ hybridization to validate critical genes and pathways. RESULTS: We identified >17,000 genes in each proximal tubule group, including 145 G-protein-coupled receptors. More than 700 transcripts were differentially expressed in the proximal tubule of males versus females. The >4000 genes displaying altered expression during fibrosis were enriched for proinflammatory and profibrotic pathways. Our identification of nearly 150 differentially expressed proximal tubule lncRNAs during fibrosis suggests they may have unanticipated regulatory roles. Network analysis prioritized proinflammatory and profibrotic transcription factors such as Irf1, Nfkb1, and Stat3 as drivers of fibrosis progression. CONCLUSIONS: This comprehensive transcriptomic map of the proximal tubule revealed sexually dimorphic gene expression that may reflect sex-related disparities in CKD, proinflammatory gene modules, and previously unappreciated proximal tubule-specific bidirectional lncRNA regulation.


Asunto(s)
Inflamación/genética , Túbulos Renales Proximales , Riñón/patología , Biosíntesis de Proteínas , ARN Largo no Codificante/biosíntesis , Insuficiencia Renal Crónica/genética , Caracteres Sexuales , Animales , Progresión de la Enfermedad , Femenino , Fibrosis/genética , Masculino , Ratones
15.
J Am Soc Nephrol ; 31(9): 1977-1986, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32669324

RESUMEN

BACKGROUND: In solid organ transplantation, donor-derived immune cells are assumed to decline with time after surgery. Whether donor leukocytes persist within kidney transplants or play any role in rejection is unknown, however, in part because of limited techniques for distinguishing recipient from donor cells. METHODS: Whole-exome sequencing of donor and recipient DNA and single-cell RNA sequencing (scRNA-seq) of five human kidney transplant biopsy cores distinguished immune cell contributions from both participants. DNA-sequence comparisons used single nucleotide variants (SNVs) identified in the exome sequences across all samples. RESULTS: Analysis of expressed SNVs in the scRNA-seq data set distinguished recipient versus donor origin for all 81,139 cells examined. The leukocyte donor/recipient ratio varied with rejection status for macrophages and with time post-transplant for lymphocytes. Recipient macrophages displayed inflammatory activation whereas donor macrophages demonstrated antigen presentation and complement signaling. Recipient-origin T cells expressed cytotoxic and proinflammatory genes consistent with an effector cell phenotype, whereas donor-origin T cells appeared quiescent, expressing oxidative phosphorylation genes. Finally, both donor and recipient T cell clones within the rejecting kidney suggested lymphoid aggregation. The results indicate that donor-origin macrophages and T cells have distinct transcriptional profiles compared with their recipient counterparts, and that donor macrophages can persist for years post-transplantation. CONCLUSIONS: Analysis of single nucleotide variants and their expression in single cells provides a powerful novel approach to accurately define leukocyte chimerism in a complex organ such as a transplanted kidney, coupled with the ability to examine transcriptional profiles at single-cell resolution.


Asunto(s)
Rechazo de Injerto/inmunología , Trasplante de Riñón/efectos adversos , Subgrupos Linfocitarios/inmunología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Quimerismo , Variación Genética , Humanos , Donantes de Tejidos , Trasplante Homólogo
16.
Am J Respir Cell Mol Biol ; 63(6): 739-747, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32804550

RESUMEN

Single-cell RNA sequencing (scRNASeq) has advanced our understanding of lung biology, but its utility is limited by the need for fresh samples, loss of cell types by death or inadequate dissociation, and transcriptional stress responses induced during tissue digestion. Single-nucleus RNA sequencing (snRNASeq) has addressed these deficiencies in other tissues, but no protocol exists for lung tissue. We present a snRNASeq protocol and compare its results with those of scRNASeq. Two nuclear suspensions were prepared in lysis buffer on ice while one cell suspension was generated using enzymatic and mechanical dissociation. Cells and nuclei were processed using the 10× Genomics platform, and sequencing data were analyzed by Seurat. A total of 16,110 single-nucleus and 11,934 single-cell transcriptomes were generated. Gene detection rates were equivalent in snRNASeq and scRNASeq (∼1,700 genes and 3,000 unique molecular identifiers per cell) when mapping intronic and exonic reads. In the combined data, 89% of epithelial cells were identified by snRNASeq versus 22.2% of immune cells. snRNASeq transcriptomes are enriched for transcription factors and signaling proteins, with reduction in mitochondrial and stress-response genes. Both techniques improved mesenchymal cell detection over previous studies. Homeostatic signaling relationships among alveolar cell types were defined by receptor-ligand mapping using snRNASeq data, revealing interplay among epithelial, mesenchymal, and capillary endothelial cells. snRNASeq can be applied to archival murine lung samples, improves dissociation bias, eliminates artifactual gene expression, and provides similar gene detection compared with scRNASeq.


Asunto(s)
Trastornos Disociativos/genética , Células Endoteliales/metabolismo , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN , Animales , Núcleo Celular/metabolismo , Trastornos Disociativos/metabolismo , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica/métodos , Pulmón/metabolismo , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN/métodos
17.
J Am Soc Nephrol ; 30(1): 23-32, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30510133

RESUMEN

BACKGROUND: A challenge for single-cell genomic studies in kidney and other solid tissues is generating a high-quality single-cell suspension that contains rare or difficult-to-dissociate cell types and is free of both RNA degradation and artifactual transcriptional stress responses. METHODS: We compared single-cell RNA sequencing (scRNA-seq) using the DropSeq platform with single-nucleus RNA sequencing (snRNA-seq) using sNuc-DropSeq, DroNc-seq, and 10X Chromium platforms on adult mouse kidney. We validated snRNA-seq on fibrotic kidney from mice 14 days after unilateral ureteral obstruction (UUO) surgery. RESULTS: A total of 11,391 transcriptomes were generated in the comparison phase. We identified ten clusters in the scRNA-seq dataset, but glomerular cell types were absent, and one cluster consisted primarily of artifactual dissociation-induced stress response genes. By contrast, snRNA-seq from all three platforms captured a diversity of kidney cell types that were not represented in the scRNA-seq dataset, including glomerular podocytes, mesangial cells, and endothelial cells. No stress response genes were detected. Our snRNA-seq protocol yielded 20-fold more podocytes compared with published scRNA-seq datasets (2.4% versus 0.12%, respectively). Unexpectedly, single-cell and single-nucleus platforms had equivalent gene detection sensitivity. For validation, analysis of frozen day 14 UUO kidney revealed rare juxtaglomerular cells, novel activated proximal tubule and fibroblast cell states, and previously unidentified tubulointerstitial signaling pathways. CONCLUSIONS: snRNA-seq achieves comparable gene detection to scRNA-seq in adult kidney, and it also has substantial advantages, including reduced dissociation bias, compatibility with frozen samples, elimination of dissociation-induced transcriptional stress responses, and successful performance on inflamed fibrotic kidney.


Asunto(s)
Núcleo Celular/genética , Perfilación de la Expresión Génica/métodos , Enfermedades Renales/genética , Análisis de Secuencia de ARN/métodos , Adulto , Animales , Células Cultivadas , Proteínas en la Dieta/metabolismo , Modelos Animales de Enfermedad , Fibrosis/genética , Fibrosis/patología , Regulación de la Expresión Génica , Humanos , Técnicas In Vitro , Enfermedades Renales/patología , Ratones , Ratones Endogámicos C57BL , ARN Nuclear Pequeño/genética , Sensibilidad y Especificidad , Análisis de la Célula Individual/métodos , Transcriptoma/genética
18.
Am J Physiol Renal Physiol ; 316(1): F63-F75, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30303712

RESUMEN

Glioma-associated oncogene homolog-1 (Gli1)-positive resident mesenchymal stem cell-like cells are the predominant source of kidney myofibroblasts in fibrosis, but investigating Gli1-positive myofibroblast progenitor activation is hampered by the difficulty of isolating and propagating primary cultures of these cells. Using a genetic strategy with positive and negative selection, we isolated Kidney-Gli1 (KGli1) cells that maintain expression of appropriate mesenchymal stem cell-like cell markers, respond to hedgehog pathway activation, and display robust myofibroblast differentiation upon treatment with transforming growth factor-ß (TGF-ß). Coculture of KGli1 cells with endothelium stabilizes capillary formation. Single-cell RNA sequencing (scRNA-seq) analysis during differentiation identified autocrine ligand-receptor pair upregulation and a strong focal adhesion pathway signal. This led us to test the serum response factor inhibitor CCG-203971 that potently inhibited TGF-ß-induced pericyte-to-myofibroblast transition. scRNA-seq also identified the unexpected upregulation of nerve growth factor (NGF), which we confirmed in two mouse kidney fibrosis models. The Ngf receptor Ntrk1 is expressed in tubular epithelium in vivo, suggesting a novel interstitial-to-tubule paracrine signaling axis. Thus, KGli1 cells accurately model myofibroblast activation in vitro, and the development of this cell line provides a new tool to study resident mesenchymal stem cell-like progenitors in health and disease.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Riñón/metabolismo , Células Madre Mesenquimatosas/metabolismo , Miofibroblastos/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo , Animales , Antígenos Transformadores de Poliomavirus/genética , Antígenos Transformadores de Poliomavirus/metabolismo , Línea Celular Transformada , Separación Celular , Técnicas de Cocultivo , Transición Epitelial-Mesenquimal , Fibrosis , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Riñón/patología , Células Madre Mesenquimatosas/patología , Ratones Transgénicos , Miofibroblastos/patología , Neovascularización Fisiológica , Comunicación Paracrina , Fenotipo , Transducción de Señal , Proteína con Dedos de Zinc GLI1/genética
20.
J Am Soc Nephrol ; 29(8): 2069-2080, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29980650

RESUMEN

Background Single-cell genomics techniques are revolutionizing our ability to characterize complex tissues. By contrast, the techniques used to analyze renal biopsy specimens have changed little over several decades. We tested the hypothesis that single-cell RNA-sequencing can comprehensively describe cell types and states in a human kidney biopsy specimen.Methods We generated 8746 single-cell transcriptomes from a healthy adult kidney and a single kidney transplant biopsy core by single-cell RNA-sequencing. Unsupervised clustering analysis of the biopsy specimen was performed to identify 16 distinct cell types, including all of the major immune cell types and most native kidney cell types, in this biopsy specimen, for which the histologic read was mixed rejection.Results Monocytes formed two subclusters representing a nonclassical CD16+ group and a classic CD16- group expressing dendritic cell maturation markers. The presence of both monocyte cell subtypes was validated by staining of independent transplant biopsy specimens. Comparison of healthy kidney epithelial transcriptomes with biopsy specimen counterparts identified novel segment-specific proinflammatory responses in rejection. Endothelial cells formed three distinct subclusters: resting cells and two activated endothelial cell groups. One activated endothelial cell group expressed Fc receptor pathway activation and Ig internalization genes, consistent with the pathologic diagnosis of antibody-mediated rejection. We mapped previously defined genes that associate with rejection outcomes to single cell types and generated a searchable online gene expression database.Conclusions We present the first step toward incorporation of single-cell transcriptomics into kidney biopsy specimen interpretation, describe a heterogeneous immune response in mixed rejection, and provide a searchable resource for the scientific community.


Asunto(s)
Fallo Renal Crónico/genética , Trasplante de Riñón/métodos , Riñón/citología , Riñón/patología , Transcriptoma/genética , Aloinjertos , Biomarcadores/análisis , Biopsia con Aguja , Comunicación Celular , Análisis por Conglomerados , Perfilación de la Expresión Génica/métodos , Rechazo de Injerto/genética , Rechazo de Injerto/inmunología , Humanos , Inmunohistoquímica , Fallo Renal Crónico/patología , Fallo Renal Crónico/cirugía , Masculino , Valores de Referencia , Análisis de Secuencia de ARN , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA