Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38856168

RESUMEN

Nucleic acid-binding proteins (NABPs), including DNA-binding proteins (DBPs) and RNA-binding proteins (RBPs), play important roles in essential biological processes. To facilitate functional annotation and accurate prediction of different types of NABPs, many machine learning-based computational approaches have been developed. However, the datasets used for training and testing as well as the prediction scopes in these studies have limited their applications. In this paper, we developed new strategies to overcome these limitations by generating more accurate and robust datasets and developing deep learning-based methods including both hierarchical and multi-class approaches to predict the types of NABPs for any given protein. The deep learning models employ two layers of convolutional neural network and one layer of long short-term memory. Our approaches outperform existing DBP and RBP predictors with a balanced prediction between DBPs and RBPs, and are more practically useful in identifying novel NABPs. The multi-class approach greatly improves the prediction accuracy of DBPs and RBPs, especially for the DBPs with ~12% improvement. Moreover, we explored the prediction accuracy of single-stranded DNA binding proteins and their effect on the overall prediction accuracy of NABP predictions.


Asunto(s)
Biología Computacional , Proteínas de Unión al ADN , Aprendizaje Profundo , Proteínas de Unión al ARN , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ADN/metabolismo , Biología Computacional/métodos , Redes Neurales de la Computación , Humanos
2.
Semin Cell Dev Biol ; 121: 125-132, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34325997

RESUMEN

Studies have demonstrated that biologically active fragments are generated from the basement membrane and the Sertoli cell-spermatid adhesion site known as apical ectoplasmic specialization (apical ES, a testis-specific actin-based anchoring junction) in the rat testis. These bioactive fragments or peptides are produced locally across the seminiferous epithelium through proteolytic cleavage of constituent proteins at the basement membrane and the apical ES. Studies have shown that they are being used to modulate and coordinate cellular functions across the seminiferous epithelium during different stages of the epithelial cycle of spermatogenesis. In this review, we briefly summarize recent findings based on studies using rat testes as a study model regarding the role of these bioactive peptides that serve as a local regulatory network to support spermatogenesis. We also used scRNA-Seq transcriptome datasets in the public domain for OA (obstructive azoospermia) and NAO (non-obstructive azoospermia) human testes versus testes from normal men for analysis in this review. It was shown that there are differential expression of different collagen chains and laminin chains in these testes, suggesting the possibility of a similar local regulatory network in the human testis to support spermatogenesis, and the possible disruption of such network in men is associated with OA and/or NOA.


Asunto(s)
Colágeno/metabolismo , Perfilación de la Expresión Génica/métodos , Laminina/metabolismo , Análisis de la Célula Individual/métodos , Espermatogénesis/genética , Animales , Humanos , Masculino , Ratones , Persona de Mediana Edad , Ratas
3.
BMC Genomics ; 25(1): 428, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689225

RESUMEN

BACKGROUND: Although many studies have been done to reveal artificial selection signatures in commercial and indigenous chickens, a limited number of genes have been linked to specific traits. To identify more trait-related artificial selection signatures and genes, we re-sequenced a total of 85 individuals of five indigenous chicken breeds with distinct traits from Yunnan Province, China. RESULTS: We found 30 million non-redundant single nucleotide variants and small indels (< 50 bp) in the indigenous chickens, of which 10 million were not seen in 60 broilers, 56 layers and 35 red jungle fowls (RJFs) that we compared with. The variants in each breed are enriched in non-coding regions, while those in coding regions are largely tolerant, suggesting that most variants might affect cis-regulatory sequences. Based on 27 million bi-allelic single nucleotide polymorphisms identified in the chickens, we found numerous selective sweeps and affected genes in each indigenous chicken breed and substantially larger numbers of selective sweeps and affected genes in the broilers and layers than previously reported using a rigorous statistical model. Consistent with the locations of the variants, the vast majority (~ 98.3%) of the identified selective sweeps overlap known quantitative trait loci (QTLs). Meanwhile, 74.2% known QTLs overlap our identified selective sweeps. We confirmed most of previously identified trait-related genes and identified many novel ones, some of which might be related to body size and high egg production traits. Using RT-qPCR, we validated differential expression of eight genes (GHR, GHRHR, IGF2BP1, OVALX, ELF2, MGARP, NOCT, SLC25A15) that might be related to body size and high egg production traits in relevant tissues of relevant breeds. CONCLUSION: We identify 30 million single nucleotide variants and small indels in the five indigenous chicken breeds, 10 million of which are novel. We predict substantially more selective sweeps and affected genes than previously reported in both indigenous and commercial breeds. These variants and affected genes are good candidates for further experimental investigations of genotype-phenotype relationships and practical applications in chicken breeding programs.


Asunto(s)
Pollos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Selección Genética , Animales , Pollos/genética , Genoma , Mutación INDEL , Cruzamiento , Fenotipo , Genómica/métodos
4.
BMC Genomics ; 25(1): 430, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693501

RESUMEN

BACKGROUND: Although multiple chicken genomes have been assembled and annotated, the numbers of protein-coding genes in chicken genomes and their variation among breeds are still uncertain due to the low quality of these genome assemblies and limited resources used in their gene annotations. To fill these gaps, we recently assembled genomes of four indigenous chicken breeds with distinct traits at chromosome-level. In this study, we annotated genes in each of these assembled genomes using a combination of RNA-seq- and homology-based approaches. RESULTS: We identified varying numbers (17,497-17,718) of protein-coding genes in the four indigenous chicken genomes, while recovering 51 of the 274 "missing" genes in birds in general, and 36 of the 174 "missing" genes in chickens in particular. Intriguingly, based on deeply sequenced RNA-seq data collected in multiple tissues in the four breeds, we found 571 ~ 627 protein-coding genes in each genome, which were missing in the annotations of the reference chicken genomes (GRCg6a and GRCg7b/w). After removing redundancy, we ended up with a total of 1,420 newly annotated genes (NAGs). The NAGs tend to be found in subtelomeric regions of macro-chromosomes (chr1 to chr5, plus chrZ) and middle chromosomes (chr6 to chr13, plus chrW), as well as in micro-chromosomes (chr14 to chr39) and unplaced contigs, where G/C contents are high. Moreover, the NAGs have elevated quadruplexes G frequencies, while both G/C contents and quadruplexes G frequencies in their surrounding regions are also high. The NAGs showed tissue-specific expression, and we were able to verify 39 (92.9%) of 42 randomly selected ones in various tissues of the four chicken breeds using RT-qPCR experiments. Most of the NAGs were also encoded in the reference chicken genomes, thus, these genomes might harbor more genes than previously thought. CONCLUSION: The NAGs are widely distributed in wild, indigenous and commercial chickens, and they might play critical roles in chicken physiology. Counting these new genes, chicken genomes harbor more genes than originally thought.


Asunto(s)
Pollos , Genoma , Anotación de Secuencia Molecular , Animales , Pollos/genética , Composición de Base , Telómero/genética , Cromosomas/genética , Genómica/métodos
5.
Crit Rev Biochem Mol Biol ; 55(1): 71-87, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32207344

RESUMEN

Studies on cell polarity proteins and planar cell polarity (PCP) proteins date back to almost 40 years ago in Drosophila and C. elegans when these proteins were shown to be crucial to support apico-basal polarity and also directional alignment of polarity cells across the plane of an epithelium during morphogenesis. In adult mammals, cell polarity and PCP are most notable in cochlear hair cells. However, the role of these two groups of proteins to support spermatogenesis was not explored until a decade earlier when several proteins that confer cell polarity and PCP proteins were identified in the rat testis. Since then, there are several reports appearing in the literature to examine the role of both cell polarity and PCP in supporting spermatogenesis. Herein, we provide an overview regarding the role of cell polarity and PCP proteins in the testis, evaluating these findings in light of studies in other mammalian epithelial cells/tissues. Our goal is to provide a timely evaluation of these findings, and provide some thought provoking remarks to guide future studies based on an evolving concept in the field.


Asunto(s)
Polaridad Celular/fisiología , Espermatogénesis/fisiología , Testículo/metabolismo , Animales , Caenorhabditis elegans , Drosophila melanogaster , Humanos , Masculino , Ratas , Testículo/citología , Testículo/patología
6.
FASEB J ; 35(10): e21925, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34569663

RESUMEN

In mammalian testes, extensive remodeling of the microtubule (MT) and actin cytoskeletons takes place in Sertoli cells across the seminiferous epithelium to support spermatogenesis. However, the mechanism(s) involving regulatory and signaling proteins remains poorly understood. Herein, A-kinase anchoring protein 9 (AKAP9, a member of the AKAP multivalent scaffold protein family) was shown to be one of these crucial regulatory proteins in the rat testis. Earlier studies have shown that AKAP9 serves as a signaling platform by recruiting multiple signaling and regulatory proteins to create a large protein complex that binds to the Golgi and centrosome to facilitate the assembly of the MT-nucleating γ-tubulin ring complex to initiate MT polymerization. We further expanded our earlier studies based on a Sertoli cell-specific AKAP9 knockout mouse model to probe the function of AKAP9 by using the techniques of immunofluorescence analysis, RNA interference (RNAi), and biochemical assays on an in vitro primary Sertoli cell culture model, and an adjudin-based animal model. AKAP9 robustly expressed across the seminiferous epithelium in adult rat testes, colocalizing with MT-based tracks, and laid perpendicular across the seminiferous epithelium, and prominently expressed at the Sertoli-spermatid cell-cell anchoring junction (called apical ectoplasmic specialization [ES]) and at the Sertoli cell-cell interface (called basal ES, which together with tight junction [TJ] created the blood-testis barrier [BTB]) stage specifically. AKAP9 knockdown in Sertoli cells by RNAi was found to perturb the TJ-permeability barrier through disruptive changes in the distribution of BTB-associated proteins at the Sertoli cell cortical zone, mediated by a considerable loss of ability to induce both MT polymerization and actin filament bundling. A considerable decline in AKAP9 expression and a disruptive distribution of AKAP9 across the seminiferous tubules was also noted during adjudin-induced germ cell (GC) exfoliation in this animal model, illustrating AKAP9 is essential to maintain the homeostasis of cytoskeletons to maintain Sertoli and GC adhesion in the testis.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas del Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Espermatogénesis , Testículo/citología , Testículo/metabolismo , Animales , Núcleo Celular/metabolismo , Hidrazinas/metabolismo , Indazoles/metabolismo , Masculino , Modelos Animales , Ratas , Células de Sertoli/citología , Células de Sertoli/metabolismo , Testículo/química
7.
FASEB J ; 34(2): 3105-3128, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31909540

RESUMEN

During the epithelial cycle of spermatogenesis, different sets of cellular events take place across the seminiferous epithelium in the testis. For instance, remodeling of the blood-testis barrier (BTB) that facilitates the transport of preleptotene spermatocytes across the immunological barrier and the release of sperms at spermiation take place at the opposite ends of the epithelium simultaneously at stage VIII of the epithelial cycle. These cellular events are tightly coordinated via locally produced regulatory biomolecules. Studies have shown that collagen α3 (IV) chains, a major constituent component of the basement membrane, release the non-collagenous (NC) 1 domain, a 28-kDa peptide, designated NC1-peptide, from the C-terminal region, via the action of MMP-9 (matrix metalloproteinase 9). NC1-peptide was found to be capable of inducing BTB remodeling and spermatid release across the epithelium. As such, the NC1-peptide is an endogenously produced biologically active peptide which coordinates these cellular events across the epithelium in stage VIII tubules. Herein, we used an animal model, wherein NC1-peptide cloned into the pCI-neo mammalian expression vector was overexpressed in the testis, to better understanding the molecular mechanism by which NC1-peptide regulated spermatogenic function. It was shown that NC1-peptide induced considerable downregulation on a number of cell polarity and planar cell polarity (PCP) proteins, and studies have shown these polarity and PCP proteins modulate spermatid polarity and adhesion via their effects on microtubule (MT) and F-actin cytoskeletal organization across the epithelium. More important, NC1-peptide exerted its effects by downregulating the expression of microtubule (MT) plus-end tracking protein (+TIP) called EB1 (end-binding protein 1). We cloned the full-length EB1 cDNA for its overexpression in the testis, which was found to block the NC1-peptide-mediated disruptive effects on cytoskeletal organization in Sertoli cell epithelium and pertinent Sertoli cell functions. These findings thus illustrate that NC1-peptide is working in concert with EB1 to support spermatogenesis.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Barrera Hematotesticular/metabolismo , Colágeno/farmacología , Proteínas Asociadas a Microtúbulos/metabolismo , Péptidos/farmacología , Espermátides/metabolismo , Espermatogénesis/efectos de los fármacos , Animales , Barrera Hematotesticular/citología , Colágeno/química , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Péptidos/química , Ratas , Ratas Sprague-Dawley , Epitelio Seminífero/citología , Epitelio Seminífero/metabolismo , Espermátides/citología , Uniones Estrechas/metabolismo
8.
Adv Exp Med Biol ; 1288: 131-159, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34453735

RESUMEN

Unlike the intermediate filament- and septin-based cytoskeletons which are apolar structures, the microtubule (MT) and actin cytoskeletons are polarized structures in mammalian cells and tissues including the testis, most notable in Sertoli cells. In the testis, these cytoskeletons that stretch across the epithelium of seminiferous tubules and lay perpendicular to the basement membrane of tunica propria serve as tracks for corresponding motor proteins to support cellular cargo transport. These cargoes include residual bodies, phagosomes, endocytic vesicles and most notably developing spermatocytes and haploid spermatids which lack the ultrastructures of motile cells (e.g., lamellipodia, filopodia). As such, these developing germ cells require the corresponding motor proteins to facilitate their transport across the seminiferous epithelium during the epithelial cycle of spermatogenesis. Due to the polarized natures of these cytoskeletons with distinctive plus (+) and minus (-) end, directional cargo transport can take place based on the use of corresponding actin- or MT-based motor proteins. These include the MT-based minus (-) end directed motor proteins: dyneins, and the plus (+) end directed motor proteins: kinesins, as well as the actin-based motor proteins: myosins, many of which are plus (+) end directed but a few are also minus (-) end directed motor proteins. Recent studies have shown that these motor proteins are essential to support spermatogenesis. In this review, we briefly summarize and evaluate these recent findings so that this information will serve as a helpful guide for future studies and for planning functional experiments to better understand their role mechanistically in supporting spermatogenesis.


Asunto(s)
Dineínas , Espermatogénesis , Animales , Masculino , Miosinas , Epitelio Seminífero , Células de Sertoli , Espermátides
9.
Semin Cell Dev Biol ; 81: 88-96, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29410206

RESUMEN

It is conceivable that spermatid apico-basal polarity and spermatid planar cell polarity (PCP) are utmost important to support spermatogenesis. The orderly arrangement of developing germ cells in particular spermatids during spermiogenesis are essential to obtain structural and nutrient supports from the fixed number of Sertoli cells across the limited space of seminiferous epithelium in the tubules following Sertoli cell differentiation by ∼17 day postpartum (dpp) in rodents and ∼12 years of age at puberty in humans. Yet few studies are found in the literature to investigate the role of these proteins to support spermatogenesis. Herein, we briefly summarize recent findings in the field, in particular emerging evidence that supports the concept that apico-basal polarity and PCP are conferred by the corresponding polarity proteins through their effects on the actin- and microtubule (MT)-based cytoskeletons. While much research is needed to bridge our gaps of understanding cell polarity, cytoskeletal function, and signaling proteins, a critical evaluation of some latest findings as summarized herein provides some important and also thought-provoking concepts to design better functional experiments to address this important, yet largely expored, research topic.


Asunto(s)
Actinas/metabolismo , Polaridad Celular/fisiología , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Espermátides/fisiología , Animales , Humanos , Masculino , Células de Sertoli/citología , Células de Sertoli/metabolismo , Testículo/citología , Testículo/metabolismo
10.
J Antimicrob Chemother ; 75(11): 3248-3259, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32737484

RESUMEN

BACKGROUND: Antimicrobial peptides are promising alternative antimicrobial agents to combat MDR. DP7, an antimicrobial peptide designed in silico, possesses broad-spectrum antimicrobial activities and immunomodulatory effects. However, the effects of DP7 against Pseudomonas aeruginosa and biofilm infection remain largely unexplored. OBJECTIVES: To assess (i) the antimicrobial activity of DP7 against MDR P. aeruginosa; and (ii) the antibiofilm activity against biofilm infection. Also, to preliminarily investigate the possible antimicrobial mode of action. METHODS: The MICs of DP7 for 104 clinical P. aeruginosa strains (including 57 MDR strains) and the antibiofilm activity were determined. RNA-Seq, genome sequencing and cell morphology were conducted. Both acute and chronic biofilm infection mouse models were established. Two mutants, resulting from point mutations associated with LPS and biofilms, were constructed to investigate the potential mode of action. RESULTS: DP7, at 8-32 mg/L, inhibited the growth of clinical P. aeruginosa strains and, at 64 mg/L, reduced biofilm formation by 43% to 68% in vitro. In acute lung infection, 0.5 mg/kg DP7 exhibited a 70% protection rate and reduced bacterial colonization by 50% in chronic infection. DP7 mainly suppressed gene expression involving LPS and outer membrane proteins and disrupted cell wall structure. Genome sequencing of the DP7-resistant strain DP7R revealed four SNPs controlling LPS and biofilm production. gshA44 and wbpJ139 mutants displayed LPS reduction and motility deficiency, conferring the reduction of LPS and biofilm biomass of strain DP7R and indicating that LPS was a potential target of DP7. CONCLUSIONS: These results demonstrate that DP7 may hold potential as an effective antimicrobial agent against MDR P. aeruginosa and related infections.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Antibacterianos/farmacología , Biopelículas , Simulación por Computador , Ratones , Pruebas de Sensibilidad Microbiana , Proteínas Citotóxicas Formadoras de Poros , Infecciones por Pseudomonas/tratamiento farmacológico
11.
Reproduction ; 159(3): R111-R123, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31581125

RESUMEN

Recent studies have shown that the testis is producing several biologically active peptides, namely the F5- and the NC1-peptides from laminin-γ3 and collagen α3 (IV) chain, respectively, that promotes blood-testis barrier (BTB) remodeling and also elongated spermatid release at spermiation. Also the LG3/4/5 peptide from laminin-α2 chain promotes BTB integrity which is likely being used for the assembly of a 'new' BTB behind preleptotene spermatocytes under transport at the immunological barrier. These findings thus provide a new opportunity for investigators to better understand the biology of spermatogenesis. Herein, we briefly summarize the recent findings and provide a critical update. We also present a hypothetical model which could serve as the framework for studies in the years to come.


Asunto(s)
Uniones Adherentes/metabolismo , Barrera Hematotesticular/metabolismo , Colágeno Tipo IV/metabolismo , Laminina/metabolismo , Testículo/metabolismo , Animales , Humanos , Masculino , Espermatogénesis
12.
Analyst ; 144(12): 3843-3852, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31098604

RESUMEN

Acute leukemia is a malignant clonal disease of hematopoietic stem cells with a high prevalence and mortality rate. However, there are no efficient tools to facilitate early diagnosis and treatment of leukemia. Therefore, development of new methods for the early diagnosis and prevention of leukemia, especially non-invasive diagnosis at the cellular level, is imperative. Here, a label-free signal-on fluorescence aptasensor based on terbium(iii)-aptamer (Tb3+-apt) was applied for the detection of leukemia. The aptamer sensitizes the fluorescence of Tb3+ and forms the strong fluorescent Tb3+-apt probe. The target cells, the T-cell acute lymphoblastic leukemia cell line (CCRF-CEM) combined with the Tb3+-apt probe to form the Tb3+-apt-CEM complex, were removed by centrifugation, and the supernatant containing a small amount of the Tb3+-apt probe was detected using a fluorescence spectrophotometer. The logarithm of cell concentration showed a good linear relationship (R2 = 0.9881) with the fluorescence signal. The linear range for CCRF-CEM detection was 5-5 × 106 cells per ml, while the detection limit was 5 cells per ml of the binding buffer. Clinical samples were collected from 100 cases, and the specificity and positive rates detected by this method were up to 94% and 90%, respectively. Therefore, a single-stranded DNA-sensitized terbium(iii) luminescence method diagnostic was developed which is rapid, sensitive, and economical and can be used for diagnosis of various types of leukemia at the early stage.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/diagnóstico , Terbio/química , Adolescente , Adulto , Aptámeros de Nucleótidos/toxicidad , Secuencia de Bases , Línea Celular Tumoral , Niño , Preescolar , Femenino , Fluorescencia , Humanos , Límite de Detección , Masculino , Persona de Mediana Edad , Leucemia-Linfoma Linfoblástico de Células T Precursoras/sangre , Espectrometría de Fluorescencia/métodos , Terbio/toxicidad , Adulto Joven
13.
Adv Genet (Hoboken) ; 5(2): 2300209, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38884049

RESUMEN

The VISTA enhancer database is a valuable resource for evaluating predicted enhancers in humans and mice. In addition to thousands of validated positive regions (VPRs) in the human and mouse genomes, the database also contains similar numbers of validated negative regions (VNRs). It is previously shown that the VPRs are on average half as long as predicted overlapping enhancers that are highly conserved and hypothesize that the VPRs may be truncated forms of long bona fide enhancers. Here, it is shown that like the VPRs, the VNRs also are under strong evolutionary constraints and overlap predicted enhancers in the genomes. The VNRs are also on average half as long as predicted overlapping enhancers that are highly conserved. Moreover, the VNRs and the VPRs display similar cell/tissue-specific modification patterns of key epigenetic marks of active enhancers. Furthermore, the VNRs and the VPRs show similar impact score spectra of in silico mutagenesis. These highly similar properties between the VPRs and the VNRs suggest that like the VPRs, the VNRs may also be truncated forms of long bona fide enhancers.

14.
Biomaterials ; 308: 122558, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38581764

RESUMEN

Mesenchymal stem cell (MSC)-based therapy is an effective strategy for regenerative therapy. However, safety and ease of use are still issues to be overcome in clinical applications. Exosomes are naturally derived nanoparticles containing bioactive molecules, which serve as ideal cell-free therapeutic modalities. However, issues such as delivery, long-term preservation and activity maintenance of exosomes are other problems that limit their application. In this study, we proposed the use of rapid freeze-dry-thaw macroporous hydrogels for the encapsulation of HucMSC-derived exosomes (HucMSC-Exos) combined with an antimicrobial peptide coating. This exosome-encapsulated hyaluronic acid macroporous hydrogel HD-DP7/Exo can achieve long-term storage and transport by lyophilization and can be rapidly redissolved for treatment. After comprehensively comparing the therapeutic effects of HucMSC-Exos and HucMSC-loaded hydrogels, we found that HucMSC-Exos could also effectively regulate fibroblasts, vascular endothelial cells, and macrophages and inhibit myofibroblast-mediated fibrosis, thus promoting tissue regeneration and inhibiting scar formation in a mouse model of deep second-degree burn infection healing. These properties of lyophilized storage and whole-process-repair make HD-DP7/Exo have potential application value and application prospects.


Asunto(s)
Péptidos Antimicrobianos , Exosomas , Hidrogeles , MicroARNs , Cicatrización de Heridas , Animales , Exosomas/metabolismo , Hidrogeles/química , Cicatrización de Heridas/efectos de los fármacos , Ratones , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Vendajes , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Quemaduras/terapia , Ácido Hialurónico/química , Masculino , Cicatriz , Ratones Endogámicos C57BL
15.
Sci Data ; 11(1): 247, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413610

RESUMEN

There are four species in the Crossoptilon genus inhibiting at from very low to very high altitudes across China, and they are in varying levels of danger of extinction. To better understand the genetic basis of adaptation to high altitudes and genetic changes due to bottleneck, we assembled the genome (~1.02 Gb) of a white eared pheasant (WT) (Crossoptilon crossoptilon) inhibiting at high altitudes (3,000~7,000 m) in northwest of Yunnan province, China, using a combination of Illumina short reads, PacBio long reads and Hi-C reads, with a contig N50 of 19.63 Mb and only six gaps. To further provide resources for gene annotation as well as functional and population genetics analyses, we sequenced transcriptomes of 20 major tissues of the WT individual and re-sequenced another 10 WT individuals and a blue eared pheasant (Crossoptilon auritum) individual inhabiting at intermediate altitudes (1,500~3,000 m). Our assembled WT genome, transcriptome data, and DNA sequencing data can be valuable resources for studying the biology, evolution and developing conservation strategies of these endangered species.


Asunto(s)
Cromosomas , Galliformes , Genoma , Secuencia de Bases , China , Anotación de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Galliformes/genética , Animales , Especies en Peligro de Extinción , Transcriptoma , Altitud
16.
ACS Nano ; 18(19): 12194-12209, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38689426

RESUMEN

In situ vaccines (ISVs) utilize the localized delivery of chemotherapeutic agents or radiotherapy to stimulate the release of endogenous antigens from tumors, thereby eliciting systemic and persistent immune activation. Recently, a bioinspired ISV strategy has attracted tremendous attention due to its features such as an immune adjuvant effect and genetic plasticity. M13 bacteriophages are natural nanomaterials with intrinsic immunogenicity, genetic flexibility, and cost-effectiveness for large-scale production, demonstrating the potential for application in cancer vaccines. In this study, we propose an ISV based on the engineered M13 bacteriophage targeting CD40 (M13CD40) for dendritic cell (DC)-targeted immune stimulation, named H-GM-M13CD40. We induce immunogenic cell death and release tumor antigens through local delivery of (S)-10-hydroxycamptothecin (HCPT), followed by intratumoral injection of granulocyte-macrophage colony stimulating factor (GM-CSF) and M13CD40 to enhance DC recruitment and activation. We demonstrate that this ISV strategy can result in significant accumulation and activation of DCs at the tumor site, reversing the immunosuppressive tumor microenvironment. In addition, H-GM-M13CD40 can synergize with the PD-1 blockade and induce abscopal effects in cold tumor models. Overall, our study verifies the immunogenicity of the engineered M13CD40 bacteriophage and provides a proof of concept that the engineered M13CD40 phage can function as an adjuvant for ISVs.


Asunto(s)
Bacteriófago M13 , Vacunas contra el Cáncer , Células Dendríticas , Microambiente Tumoral , Vacunas contra el Cáncer/inmunología , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos , Animales , Bacteriófago M13/inmunología , Bacteriófago M13/química , Ratones , Células Dendríticas/inmunología , Antígenos CD40/inmunología , Antígenos CD40/metabolismo , Ratones Endogámicos C57BL , Femenino , Línea Celular Tumoral , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Antígenos de Neoplasias/inmunología , Humanos
17.
Sci Data ; 11(1): 300, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490983

RESUMEN

Many lines of evidence indicate that red jungle fowl (RJF) is the primary ancestor of domestic chickens. Although multiple versions of RJF (galgal2-galgal5 and GRCg6a) and commercial chickens (GRCg7b/w and Huxu) genomes have been assembled since 2004, no high-quality indigenous chicken genomes have been assembled, hampering the understanding of chicken domestication and evolution. To fill the gap, we sequenced the genomes of four indigenous chickens with distinct morphological traits in southwest China, using a combination of short, long and Hi-C reads. We assembled each genome (~1.0 Gb) into 42 chromosomes with chromosome N50 90.5-90.9 Mb, amongst the highest quality of chicken genome assemblies. To provide resources for gene annotation and functional analysis, we also sequenced transcriptomes of 10 tissues for each of the four chickens. Moreover, we corrected many mis-assemblies and assembled missing micro-chromosomes 29 and 34-39 for GRCg6a. Our assemblies, sequencing data and the correction of GRCg6a can be valuable resources for studying chicken domestication and evolution.


Asunto(s)
Pollos , Genoma , Animales , Secuencia de Bases , Pollos/genética , Cromosomas , Filogenia
18.
Sci Rep ; 14(1): 3602, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351116

RESUMEN

Reproductive success requires the development of viable oocytes and the accurate segregation of chromosomes during meiosis. Failure to segregate chromosomes properly can lead to infertility, miscarriages, or developmental disorders. A variety of factors contribute to accurate chromosome segregation and oocyte development, such as spindle assembly and sister chromatid cohesion. However, many proteins required for meiosis remain unknown. In this study, we aimed to develop a screening pipeline for identifying novel meiotic and fertility genes using the genome of Drosophila melanogaster. To accomplish this goal, genes upregulated within meiotically active tissues were identified. More than 240 genes with no known function were silenced using RNA interference (RNAi) and the effects on meiosis and fertility were assessed. We identified 94 genes that when silenced caused infertility and/or high levels of chromosomal nondisjunction. The vast majority of these genes have human and mouse homologs that are also poorly studied. Through this screening process, we identified novel genes that are crucial for meiosis and oocyte development but have not been extensively studied in human or model organisms. Understanding the function of these genes will be an important step towards the understanding of their biological significance during reproduction.


Asunto(s)
Proteínas de Drosophila , Infertilidad , Humanos , Animales , Ratones , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transcriptoma , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Meiosis/genética , Segregación Cromosómica , Fertilidad/genética , Infertilidad/metabolismo , Oocitos/metabolismo
19.
NAR Genom Bioinform ; 5(3): lqad085, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37745976

RESUMEN

Self-transcribing active regulatory region sequencing (STARR-seq) and its variants have been widely used to characterize enhancers. However, it has been reported that up to 87% of STARR-seq peaks are located in repressive chromatin and are not functional in the tested cells. While some of the STARR-seq peaks in repressive chromatin might be active in other cell/tissue types, some others might be false positives. Meanwhile, many active enhancers may not be identified by the current STARR-seq methods. Although methods have been proposed to mitigate systematic errors caused by the use of plasmid vectors, the artifacts due to the intrinsic limitations of current STARR-seq methods are still prevalent and the underlying causes are not fully understood. Based on predicted cis-regulatory modules (CRMs) and non-CRMs in the human genome as well as predicted active CRMs and non-active CRMs in a few human cell lines/tissues with STARR-seq data available, we reveal prevalent false positives and false negatives in STARR-seq peaks generated by major variants of STARR-seq methods and possible underlying causes. Our results will help design strategies to improve STARR-seq methods and interpret the results.

20.
Biomark Res ; 11(1): 34, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36978204

RESUMEN

The immunosuppressive tumor microenvironment (TME) supports the development of tumors and limits tumor immunotherapy, including hematological malignancies. Hematological malignancies remain a major public health issue with high morbidity and mortality worldwide. As an important component of immunosuppressive regulators, the phenotypic characteristics and prognostic value of myeloid-derived suppressor cells (MDSCs) have received much attention. A variety of MDSC-targeting therapeutic approaches have produced encouraging outcomes. However, the use of various MDSC-targeted treatment strategies in hematologic malignancies is still difficult due to the heterogeneity of hematologic malignancies and the complexity of the immune system. In this review, we summarize the biological functions of MDSCs and further provide a summary of the phenotypes and suppressive mechanisms of MDSC populations expanded in various types of hematological malignancy contexts. Moreover, we discussed the clinical correlation between MDSCs and the diagnosis of malignant hematological disease, as well as the drugs targeting MDSCs, and focused on summarizing the therapeutic strategies in combination with other immunotherapies, such as various immune checkpoint inhibitors (ICIs), that are under active investigation. We highlight the new direction of targeting MDSCs to improve the therapeutic efficacy of tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA