RESUMEN
The rapidly rising risk of cognitive decline is a serious challenge for the elderly. As the wide-distributed environmental chemicals, the effects of metals exposure on cognitive function have attracted much attention, but the results remain inclusive. This study aimed to investigate the roles of multiple metals co-exposure on cognition. We included a total of 6112 middle-aged and older participants, detected their plasma levels of 23 metals by using inductively coupled plasma mass spectrometry, and assessed their cognitive function by using the Mini-Mental State Examination (MMSE). The results showed that increased plasma levels of iron (Fe) and zinc (Zn) were positively associated with MMSE score, but the increased levels of nickel (Ni) and lead (Pb) were associated with decreased MMSE score (all FDR < 0.05). Subjects exposed to both high levels of Ni and Pb showed the lowest MMSE score [ß (95% CI) = -0.310 (-0.519, -0.100)], suggesting that Ni and Pb had a synergistic toxic effect on cognitive function. In addition, the hazardous roles of Ni and Pb were mainly found among subjects with low plasma level of Zn, but were not significant among those with high-Zn level [Ni: ß (95% CI) = -0.281 (-0.546, -0.015) vs. -0.146 (-0.351, 0.058); Pb: ß (95% CI) = -0.410 (-0.651, -0.169) vs. -0.060 (-0.275, 0.155)], which suggested that Zn could attenuate the adverse effects of Pb and Ni on cognitive function. The cognitive function was gradually decreased among subjects with increased number of adverse exposures to the above four metals (Ptrend < 0.001). In conclusion, our findings revealed the individual, interactive, and combined effects of Fe, Ni, Pb, and Zn on cognitive function, which may provide new perspectives on cognitive protection, but further prospective cohort studies and biological researches are needed to validate these findings.
RESUMEN
INTRODUCTION: Rheumatoid arthritis (RA), a chronic autoimmune disorder, is currently a severe health threat. Previous studies have documented the altered expression of various miRNAs in RA patients. This study determined the expression of miR-124a in RA patients and estimated its diagnostic value for RA. METHODS: A total of 80 RA patients were enrolled as the study subjects, and 36 patients with osteoarthritis were included, with another 36 healthy people as the controls. miR-124a expression levels in peripheral blood plasma, peripheral blood mononuclear cells (PBMCs), and synovial fluid were measured using reverse transcription quantitative polymerase chain reaction, followed by Pearson correlation analysis. Additionally, the association between miR-124a and major clinical indicators was assessed, such as rheumatoid factor (RF), erythrocyte sedimentation rate (ESR), and disease activity score of 28 joints (DAS28). The diagnostic efficacy of miR-124a expression in plasma, PBMCs, and synovial fluid for RA was evaluated by the receiver operating characteristic curve, and the difference in the area under the curve (AUC) was analyzed. RESULTS: miR-124a was downregulated in RA patients, and the expression levels of miR-124a in plasma, PBMCs, and synovial fluid showed a certain degree of positive correlation. miR-124a was inversely linked with RF, ESR, and DAS28. For the diagnosis of RA patients, the AUC of plasma miR-124a was 0.899 and the cut-off value was 0.800, with 68.75% sensitivity and 94.44% specificity; the AUC of miR-124a in PBMCs was 0.937 and the cut-off value was 0.805, with 82.50% sensitivity and 91.67% specificity; the AUC of miR-124a in plasma combined with PBMCs was 0.961, with a higher diagnostic value than independent plasma or PBMCs; the AUC of miR-124a in synovial fluid was 0.929 and the cut-off value was 0.835, with 80.00% sensitivity and 88.89% specificity. CONCLUSION: miR-124a expression is downregulated in the plasma, PBMCs, and synovial fluid of RA patients and has a high diagnostic value for RA.
Asunto(s)
Artritis Reumatoide , MicroARNs , Osteoartritis , Humanos , Líquido Sinovial/metabolismo , Leucocitos Mononucleares/metabolismo , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/genética , Osteoartritis/diagnóstico , Osteoartritis/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad CrónicaRESUMEN
Epidemiologic studies have reported the positive relationship of benzo[a]pyrene (BaP) exposure with the risk of lung cancer. However, the mechanisms underlying the relationship is still unclear. Plasma microRNA (miRNA) is a typical epigenetic biomarker that was linked to environment exposure and lung cancer development. We aimed to reveal the mediation effect of plasma miRNAs on BaP-related lung cancer. We designed a lung cancer case-control study including 136 lung cancer patients and 136 controls, and measured the adducts of benzo[a]pyrene diol epoxide-albumin (BPDE-Alb) and sequenced miRNA profiles in plasma. The relationships between BPDE-Alb adducts, normalized miRNA levels and the risk of lung cancer were assessed by linear regression models. The mediation effects of miRNAs on BaP-related lung cancer were investigated. A total of 190 plasma miRNAs were significantly related to lung cancer status at Bonferroni adjusted P < 0.05, among which 57 miRNAs showed different levels with |fold change| > 2 between plasma samples before and after tumor resection surgery at Bonferroni adjusted P < 0.05. Especially, among the 57 lung cancer-associated miRNAs, BPDE-Alb adducts were significantly related to miR-17-3p, miR-20a-3p, miR-135a-5p, miR-374a-5p, miR-374b-5p, miR-423-5p and miR-664a-5p, which could in turn mediate a separate 42.2%, 33.0%, 57.5%, 36.4%, 48.8%, 32.5% and 38.2% of the relationship of BPDE-Alb adducts with the risk of lung cancer. Our results provide non-invasion biomarker candidates for lung cancer, and highlight miRNAs dysregulation as a potential intermediate mechanism by which BaP exposure lead to lung tumorigenesis.
Asunto(s)
Neoplasias Pulmonares , MicroARNs , Humanos , MicroARNs/genética , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Benzo(a)pireno/toxicidad , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/toxicidad , Estudios de Casos y Controles , Pulmón , Biomarcadores , ChinaRESUMEN
Heterogeneous catalytic mediators have been proposed to play a vital role in enhancing the multiorder reaction and nucleation kinetics in multielectron sulfur electrochemistry. However, the predictive design of heterogeneous catalysts is still challenging, owing to the lack of in-depth understanding of interfacial electronic states and electron transfer on cascade reaction in Li-S batteries. Here, a heterogeneous catalytic mediator based on monodispersed titanium carbide sub-nanoclusters embedded in titanium dioxide nanobelts is reported. The tunable catalytic and anchoring effects of the resulting catalyst are achieved by the redistribution of localized electrons caused by the abundant built-in fields in heterointerfaces. Subsequently, the resulting sulfur cathodes deliver an areal capacity of 5.6 mAh cm-2 and excellent stability at 1 C under sulfur loading of 8.0 mg cm-2 . The catalytic mechanism especially on enhancing the multiorder reaction kinetic of polysulfides is further demonstrated via operando time-resolved Raman spectroscopy during the reduction process in conjunction with theoretical analysis.
RESUMEN
Three-dimensional (3D) extrusion bioprinting has emerged as one of the most promising biofabrication technologies for preparing biomimetic tissue-like constructs. The successful construction of cell-laden constructs majorly relies on the development of proper bioinks with excellent printability and cytocompatibility. Bioinks based on gelatin methacryloyl (GelMA) have been widely explored due to the excellent biocompatibility and biodegradability and the presence of the arginine-glycine-aspartic acid (RGD) sequences for cell adhesion. However, such bioinks usually require low-temperature or ionic cross-linking systems to solidify the extruded hydrogel structures, which results in complex processes and limitations to certain applications. Moreover, many current hydrogel-based bioinks, even after chemical cross-linking, hardly possess the required strength to resist the mechanical loads during the implantation procedure. Herein, we report a self-healing hydrogel bioink based on GelMA and oxidized dextran (OD) for the direct printing of tough and fatigue-resistant cell-laden constructs at room temperature without any template or cross-linking agents. Enabled by dynamic Schiff base chemistry, the mixed GelMA/OD solution showed the characteristics of a dynamic hydrogel with shear-thinning and self-supporting behavior, which allows bridging the 5 mm gap and efficient direct bioprinting of complex constructs with high shape fidelity. After photo-cross-linking, the resulting tissue constructs exhibited excellent low cell damage, high cell viability, and enhanced mechanical strength. Moreover, the GelMA/OD construct could resist up to 95% compressive deformation without any breakage and was able to maintain 80% of the original Young's modulus during long-term loading (50 cycles). It is believed that our GelMA/OD bioink would expand the potential of GelMA-based bioinks in applications such as tissue engineering and pharmaceutical screening.
Asunto(s)
Bioimpresión , Hidrogeles , Hidrogeles/farmacología , Hidrogeles/química , Bioimpresión/métodos , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Gelatina/química , Supervivencia Celular , Andamios del Tejido/químicaRESUMEN
RATIONALE: Zinc isotopes are becoming increasingly applicable in high-temperature geochemistry, for example in crust-mantle interaction and volatilization-related processes. The published zinc isotope data for some commonly used reference materials, however, show large interlaboratory offsets. In addition, there is still limited data for zinc isotope compositions of many widely used geological reference materials. METHODS: For precise and accurate zinc isotopic ratio analysis of chemically diverse geostandards, including ultramafic to felsic igneous rocks, carbonatites, sediments and soils, an improved procedure for chemical purification of zinc was introduced in this study. The factors potentially affecting zinc isotopic ratio measurement were assessed. The accuracy and long-term reproducibility were obtained by measurements on both synthetic solutions and well-characterized geostandards. RESULTS: Purification of geologic samples with different zinc concentrations and matrix compositions yields consistent elution curves with nearly 100% recovery. Acidity and concentration mismatches and the presence of some matrix elements (e.g., Mg, Ti and Cr) have significant impacts on the precision and accuracy of zinc isotopic ratio measurement. The zinc isotope compositions of a suite of reference materials were measured using this method. CONCLUSIONS: The present study describes methods for the chemical purification of zinc and high-precision and accurate zinc isotopic ratio measurements using multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS). The long-term external reproducibility for δ66 Zn values is ±0.04 (2SD). High-quality zinc isotope data of chemically different geostandards were reported to stimulate future interlaboratory calibrations.
RESUMEN
OBJECTIVE: Mitochondria are essential organelles that execute fundamental biological processes, while mitochondrial DNA is vulnerable to environmental insults. The aim of this study was to investigate the individual and mixture effect of plasma metals on blood mitochondria DNA copy number (mtDNAcn). METHODS: This study involved 1399 randomly selected subcohort participants from the Dongfeng-Tongji cohort. The blood mtDNAcn and plasma levels of 23 metals were determined by using quantitative real-time polymerase chain reaction (qPCR) and inductively coupled plasma mass spectrometer (ICP-MS), respectively. The multiple linear regression was used to explore the association between each metal and mtDNAcn, and the LASSO penalized regression was performed to select the most significant metals. We also used the quantile g-computation analysis to assess the mixture effect of multiple metals. RESULTS: Based on multiple linear regression models, each 1% increase in plasma concentration of copper (Cu), rubidium (Rb), and titanium (Ti) was associated with a separate 0.16% [ß(95% CI) = 0.158 (0.066, 0.249), P = 0.001], 0.20% [ß(95% CI) = 0.196 (0.073, 0.318), P = 0.002], and 0.25% [ß(95% CI) = 0.245 (0.081, 0.409), P = 0.003] increase in blood mtDNAcn. The LASSO regression also confirmed Cu, Rb, and Ti as significant predictors for mtDNAcn. There was a significant mixture effect of multiple metals on increasing mtDNAcn among the elder participants (aged ≥65), with an approximately 11% increase in mtDNAcn for each quartile increase in all metal concentrations [ß(95% CI) = 0.146 (0.048, 0.243), P = 0.004]. CONCLUSIONS: Our results show that plasma Cu, Rb and Ti were associated with increased blood mtDNA, and we further revealed a significant mixture effect of all metals on mtDNAcn among elder population. These findings may provide a novel perspective on the effect of metals on mitochondrial dysfunction.
Asunto(s)
Variaciones en el Número de Copia de ADN , ADN Mitocondrial , Humanos , Anciano , Estudios Transversales , Mitocondrias/genética , Estudios de Cohortes , MetalesRESUMEN
BACKGROUND: All birds reproduce via internal fertilization, but only ~3% of male birds possess the external genitalia that allows for intromission. Waterfowl (e.g., duck and goose) are representatives of them, and the external genitalia development of male geese is directly related to mating ability. Notably, some male geese show abnormal external genitalia development during ontogenesis. However, until now little is known about the molecular mechanisms of the external genitalia development in goose. In the present study, comparative transcriptomic analyses were performed on the hypothalamus, pituitary gland, testis, and external genitalia isolated from the 245-day-old male Tianfu meat geese showing normal (NEGG, n = 3) and abnormal (AEGG, n = 3) external genitals in order to provide a better understanding of the mechanisms controlling the development of the external genitalia in aquatic bird species. RESULTS: There were 107, 284, 2192, and 1005 differentially expressed genes (DEGs) identified in the hypothalamus, pituitary gland, testis and external genitalia between NEGG and AEGG. Functional enrichment analysis indicated that the DEGs identified in the hypothalamus were mainly enriched in the ECM-receptor interaction pathway. The ECM-receptor interaction, focal adhesion, and neuroactive ligand-receptor interaction pathways were significantly enriched by the DEGs in the pituitary gland. In the testis, the DEGs were enriched in the neuroactive ligand-receptor interaction, cell cycle, oocyte meiosis, and purine metabolism. In the external genitalia, the DEGs were enriched in the metabolic, neuroactive ligand-receptor interaction, and WNT signaling pathways. Furthermore, through integrated analysis of protein-protein interaction (PPI) network and co-expression network, fifteen genes involved in the neuroactive ligand-receptor interaction and WNT signaling pathways were identified, including KNG1, LPAR2, LPAR3, NPY, PLCB1, AVPR1B, GHSR, GRM3, HTR5A, FSHB, FSHR, WNT11, WNT5A, WIF1, and WNT7B, which could play crucial roles in the development of goose external genitalia. CONCLUSIONS: This study is the first systematically comparing the hypothalamus, pituitary gland, testis, and external genitalia transcriptomes of male geese exhibiting normal and abnormal external genitals. Both bioinformatic analysis and validation experiments indicated that the neuroactive ligand-receptor interaction pathway could regulate the WNT signaling pathway through PLCB1 to control male goose external genitalia development.
Asunto(s)
Gansos , Transcriptoma , Animales , Biología Computacional , Gansos/genética , Perfilación de la Expresión Génica , Genitales , MasculinoRESUMEN
Titanium-based anode materials have achieved much progress with the wide studies in lithium-ion batteries. However, these known materials usually possess high discharge voltage platforms and limited energy densities. Herein, a titanium-based oxide of Na2 TiGeO5 with layered structure, two-dimensional lamellar frame and exposed highly active (001) facet, exhibiting good electrochemical performance in terms of high capacity (410 mAh g-1 with a current density of 50 mA g-1 ), excellent rate capability and cycling stability with no obvious capacity attenuation after 4000 cycles, is reported. The appropriate discharge voltage plateau at around 0.2 V endows the Na2 TiGeO5 anode material high security compared with graphite and high energy density compared with spinel Li4 Ti5 O12 . Combining the electrochemical tests and the density functional theory calculations, the Li+ storage mechanism of Na2 TiGeO5 is elucidated and the conversion reaction process is revealed. More importantly, this study provides a way to develop low-voltage and high-capacity titanium-based anode materials for efficient energy storage.
RESUMEN
Femtosecond laser micromachining has been considered as a powerful tool for fabricating versatile fiber devices and received increasing attention in recent years. Here, we report on a compact sensor by integrating a bridge-like waveguide inside a single-mode fiber to construct an in-line Mach-Zehnder interferometer and then inscribing a second-order Bragg grating in the core of the same fiber. The interference dip shows good performance in torsion sensing - the maximum torsion sensitivity of 1.5573 nm/(rad/m), the ability to identify the torsion direction, and low perturbation of axial strain. In order to compensate the cross impact of temperature, the fiber Bragg grating dip is employed as the second indicator and combined with the interference dip for discriminating temperature and directional torsion simultaneously. The proposed device also has the merits such as compact size, high thermal stability, and so on.
RESUMEN
Monitoring clinical biomarkers, such as testosterone in serum, is important for disease assessment. Due to the very low concentration of testosterone in serum, we have developed a new strategy for its enrichment in serum samples by magnetic molecularly imprinted polymers (MMIPs) technology and detection by nano-electrospray ionization mass spectrometry (Nano-ESI-MS). Testosterone was selectively extracted and enriched by the imprinted polymers on the surface of magnetic particles and the complex matrix was eliminated from the serum. The linear calibration curve was in the range of 0.1-10 µg/L and the limit of detection was 11.4 ng/L. The recovery and repeatability of the spiked serum were satisfactory. These results demonstrate that the proposed method is a promising approach for quantitative analysis of testosterone in serum.
Asunto(s)
Impresión Molecular , Fenómenos Magnéticos , Magnetismo , Impresión Molecular/métodos , Polímeros Impresos Molecularmente , TestosteronaRESUMEN
Steroid hormones play important roles in metabolism and metabolic diseases. Currently, various detection methods are employed in clinical labs, mainly immunoassays and LC-MS/MS, but these methods suffer from antibody cross-reactivity or the need for complex LC processes, respectively. Here, we utilized single antibody to capture and separate multiple hormones from samples to avoid LC procedures and used MS/MS to analyze multiple molecules in a single run. In our strategy, testosterone (T), androstenedione (4-AD), and androsterone (ADT) were affinity-captured simultaneously using only T antibody. The qualitative and quantitative analysis of three androgens was realized through MS/MS spectra using testosterone-D3 (T-D3) as an internal standard. Standard curves for standard solution or spiked serum samples were realized in the range of 0.01-2 µg L-1. The LODs for the three androgens were 2.3 × 10-3 µg L-1 for testosterone, 4.6 × 10-3 µg L-1 for androstenedione, and 2.8 × 10-3 µg L-1 for androsterone. The recovery results verified the reliability and stability of our method. This strategy has widespread potential for advancing the combination of immunoassay and MS methods in the analysis of small molecules, with high through-put and low cost.
Asunto(s)
Androstenodiona , Espectrometría de Masas en Tándem , Andrógenos , Androsterona , Cromatografía Liquida/métodos , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos , TestosteronaRESUMEN
The critical energy release rate (Gc) is a key parameter in numerical simulations of hydraulic fracturing, which may be affected by a fluid. Molecular dynamics (MD) simulations of minerals' tensile failure can be performed to gain insights into the mechanisms relevant to the critical energy release rate at the microscale. The methodology of calculating the critical energy release rate for solid-fluid systems is challenging. In this study, we conduct extensive MD simulations for solid-vacuum and solid-fluid systems. Typical components in shale and andesite, including quartz, muscovite, and kerogen, are selected in our investigation. The effect of H2O and CO2 on the critical energy release rate is analyzed. Fracture propagation and fluid invasion in fractures are also monitored. The results show that quartz and muscovite are brittle in H2O and CO2 and kerogen has very pronounced ductile behavior. H2O can reduce the critical energy release rate of quartz and muscovite slightly, but may increase that of kerogen. The effect of CO2 on quartz and muscovite is mild, while it reduces Gc of kerogen significantly. The implication is the creation of a much higher surface area in kerogen by CO2 than by H2O, which is in line with large-scale observations.
RESUMEN
BACKGROUND: White matter hyperintensity (WMH) is one of the typical neuroimaging manifestations of cerebral small vessel disease (CSVD), and the WMH correlates closely to cognitive impairment (CI). CSVD patients with WMH own altered topological properties of brain functional network, which is a possible mechanism that leads to CI. This study aims to identify differences in the characteristics of some brain functional network among patients with different grades of WMH and estimates the correlations between these different brain functional network characteristics and cognitive assessment scores. METHODS: 110 CSVD patients underwent 3.0 T Magnetic resonance imaging scans and neuropsychological cognitive assessments. WMH of each participant was graded on the basis of Fazekas grade scale and was divided into two groups: (A) WMH score of 1-2 points (n = 64), (B) WMH score of 3-6 points (n = 46). Topological indexes of brain functional network were analyzed using graph-theoretical method. T-test and Mann-Whitney U test was used to compare the differences in topological properties of brain functional network between groups. Partial correlation analysis was applied to explore the relationship between different topological properties of brain functional networks and overall cognitive function. RESULTS: Patients with high WMH scores exhibited decreased clustering coefficient values, global and local network efficiency along with increased shortest path length on whole brain level as well as decreased nodal efficiency in some brain regions on nodal level (p < 0.05). Nodal efficiency in the left lingual gyrus was significantly positively correlated with patients' total Montreal Cognitive Assessment (MoCA) scores (p < 0.05). No significant difference was found between two groups on the aspect of total MoCA and Mini-mental State Examination (MMSE) scores (p > 0.05). CONCLUSION: Therefore, we come to conclusions that patients with high WMH scores showed less optimized small-world networks compared to patients with low WMH scores. Global and local network efficiency on the whole-brain level, as well as nodal efficiency in certain brain regions on the nodal level, can be viewed as markers to reflect the course of WMH.
Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Disfunción Cognitiva , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/patología , Cognición , Disfunción Cognitiva/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patologíaRESUMEN
Knowledge of phytoplankton limiting factors is essential for cost-efficient lake eutrophication management. Herein, we propose a statistical framework to explore site-specific phytoplankton limiting factors and their dependence on water depth (WD) in 54 lakes in the Chinese Eastern Plains ecoregion. First, the maximal chlorophyll a (Chla) response to total N (TN) or P (TP), representing a region-specific "standard" model where phytoplankton were primarily N- or P-limited, was quantified using a 95% quantile regression. Second, site-specific limiting factors were identified using analogical residual analysis. N- or P-limitation was inferred if FractionTN (i.e. fraction of Chla observed and predicted by the "standard" model for a given TN) > 0.95 or FractionTP >0.95; if both FractionTN and FractionTP <0.95 in a specific environmental condition (e.g. high non-algal turbidity), light limitation was suggested. As a result, 5%, 7%, 4%, 36%, 16%, 2%, and 30% of the sampling sites were limited by N, P, N+P, light availability, rapid flushing, abundant macrophytes, and unmeasured factors, respectively. Bloom control suggestions in the short run are proposed considering these actual limiting factors. Furthermore, the maximal FractionTN or FractionTP response to WD was explored, reflecting the effect of WD on FractionTN (or FractionTP) without significant confounders. The results indicated that phytoplankton in the studied freshwaters would be potentially light-limited, N-limited, N+P-co-limited, or P-limited depending on WD (<1.8, 1.8-2.1, 2.1-5.2, or >5.2 m, respectively), because N will gradually become surplus with increasing WD, while at very shallow depths, strong sediment re-suspension induces light limitation. This finding implies that long-term nutrient management strategies in the studied freshwaters that have WDs of 0-2.1, 2.1-5.2, and >5.2 m can entail control of N, N+P, and P, respectively. This study provides essential information for formulating context-dependent bloom control for lakes in our study area and serves as a valuable reference for developing a cost-efficient eutrophication management framework for other regions.
Asunto(s)
Cianobacterias , Lagos , China , Clorofila A , Monitoreo del Ambiente , Eutrofización , Nitrógeno/análisis , Fósforo/análisis , Fitoplancton , AguaRESUMEN
Novel all-inorganic Sn-Pb alloyed perovskites are developed aiming for low toxicity, low bandgap, and long-term stability. Among them, CsPb1- x Snx I2 Br is predicted as an ideal perovskite with favorable band gap, but previously is demonstrated unable to convert to perovskite phase by thermal annealing. In this report, a series of CsPb1- x Snx I2 Br perovskites with tunable bandgaps from 1.92 to 1.38 eV are successfully prepared for the first time via low annealing temperature (60 °C). Compared to the pure CsPbI2 Br, these Sn-Pb alloyed perovskites show superior stability. Furthermore, a novel α-phase-stabilization mechanism of the inorganic Sn-Pb alloyed perovskite by reconfiguring the perovskite crystallization process with chloride doping is provided. Simultaneously, a dense protection layer is formed by the coordination reaction between the surface lead dangling bonds and sulfate ion to retard the permeation of external oxygen and moisture, leading to less oxidation of Sn2+ in perovskite film. As a result, the fabricated all-inorganic Sn-Pb perovskite solar cells (PSCs) show a champion power conversion efficiency of 10.39% with improved phase stability and long-term ambient stability against light, heat, and humidity. This work provides a viable strategy in fabricating high-performance narrow-bandgap all-inorganic PSCs.
RESUMEN
Spontaneous emulsification near the oil-water interface and destabilization of water-in-oil emulsions in the bulk oil phase may affect the efficiency of improved oil recovery. In this study, we investigate the effect of a demulsifier surfactant on spontaneous emulsification near the oil-aqueous phase interface and in the bulk oil phase through imaging. The results show that pronounced spontaneous emulsions may form near the oil-aqueous phase interfaces. The mechanism of diffusion and stranding is believed to dominate spontaneous emulsification. A demulsifier surfactant, which has been used for demulsification of water-in-oil emulsions in the bulk oil phase, is found to enhance spontaneous emulsification near the oil-water interface. The diffusive flux of water through the interface can be enhanced if the demulsifier is added into the aqueous phase, in which the demulsifier may act as a carrier. It can generate a region of local supersaturation combined with hydrated asphaltenes and result in faster and stronger spontaneous emulsification. We also investigate the effect of a viscosifier polymer on emulsion formation. The polymer is used to improve sweep efficiency in oil displacement. In this work, we show that it can inhibit emulsification in the bulk oil phase, but its effect on spontaneous emulsification near the interface is not pronounced.
RESUMEN
Anurans (frogs and toads) are among the most globally threatened taxonomic groups. Successful conservation of anurans will rely on improved data on the status and changes in local populations, particularly for rare and threatened species. Automated sensors, such as acoustic recorders, have the potential to provide such data by massively increasing the spatial and temporal scale of population sampling efforts. Analyzing such data sets will require robust and efficient tools that can automatically identify the presence of a species in audio recordings. Like bats and birds, many anuran species produce distinct vocalizations that can be captured by autonomous acoustic recorders and represent excellent candidates for automated recognition. However, in contrast to birds and bats, effective automated acoustic recognition tools for anurans are not yet widely available. An effective automated call-recognition method for anurans must be robust to the challenges of real-world field data and should not require extensive labeled data sets. We devised a vocalization identification tool that classifies anuran vocalizations in audio recordings based on their periodic structure: the repeat interval-based bioacoustic identification tool (RIBBIT). We applied RIBBIT to field recordings to study the boreal chorus frog (Pseudacris maculata) of temperate North American grasslands and the critically endangered variable harlequin frog (Atelopus varius) of tropical Central American rainforests. The tool accurately identified boreal chorus frogs, even when they vocalized in heavily overlapping choruses and identified variable harlequin frog vocalizations at a field site where it had been very rarely encountered in visual surveys. Using a few simple parameters, RIBBIT can detect any vocalization with a periodic structure, including those of many anurans, insects, birds, and mammals. We provide open-source implementations of RIBBIT in Python and R to support its use for other taxa and communities.
Los anuros (ranas y sapos) se encuentran dentro de los grupos taxonómicos más amenazados a nivel mundial. La conservación exitosa de los anuros dependerá de información mejorada sobre el estado y los cambios en las poblaciones locales, particularmente para las especies raras y amenazadas. Los sensores automatizados, como las grabadoras acústicas, tienen el potencial para proporcionar dicha información al incrementar masivamente la escala espacial y temporal de los esfuerzos de muestreo poblacional. El análisis de dicha información requerirá herramientas robustas y eficientes que puedan identificar automáticamente la presencia de una especie en las grabaciones de audio. Como las aves y los murciélagos, muchas especies de anuros producen vocalizaciones distintivas que pueden ser capturadas por las grabadoras acústicas autónomas y también son excelentes candidatas para el reconocimiento automatizado. Sin embargo, a diferencia de las aves y los murciélagos, todavía no se cuenta con una disponibilidad extensa de herramientas para el reconocimiento acústico automatizado de los anuros. Un método efectivo para el reconocimiento automatizado del canto de los anuros debe ser firme ante los retos de los datos reales de campo y no debería requerir conjuntos extensos de datos etiquetados. Diseñamos una herramienta de identificación de las vocalizaciones: la herramienta de identificación bioacústica basada en el intervalo de repetición (RIBBIT), el cual clasifica las vocalizaciones de los anuros en las grabaciones de audio con base en su estructura periódica. Aplicamos la RIBBIT a las grabaciones de campo para estudiar a dos especies: la rana coral boreal (Pseudacris maculata) de los pastizales templados de América del Norte y la rana arlequín variable (Atelopus varius), críticamente en peligro de extinción, de las selvas tropicales de América Central. Mostramos que RIBBIT puede identificar correctamente a las ranas corales boreales, incluso cuando vocalizan en coros con mucha superposición, y puede identificar las vocalizaciones de la rana arlequín variable en un sitio de campo en donde rara vez se le ha visto durante censos visuales. Mediante relativamente unos cuantos parámetros simples, RIBBIT puede detectar cualquier vocalización con una estructura periódica, incluyendo aquellas de muchos anuros, insectos, aves y mamíferos. Proporcionamos implementaciones de fuente abierta de RIBBIT en Python y en R para fomentar su uso para otros taxones y comunidades.
Asunto(s)
Conservación de los Recursos Naturales , Vocalización Animal , Acústica , Animales , Anuros , AvesRESUMEN
Fluid-fluid interfacial free energy can be measured accurately and can also be calculated from molecular simulations. However, it is challenging to measure solid-fluid interfacial free energy directly. Accurate computation has not yet been advanced by molecular simulations. In this study, we derive working expressions for estimating solid-fluid interfacial free energy based on the free-energy perturbation method with consideration of solid deformation. A Lennard-Jones solid-fluid system is simulated. Our derivations indicate that the effect of solid deformation is pronounced on solid-fluid interfacial free energy, and the results may be significantly different from the conventional test area method. Our results reveal that the contribution of the solid deformation highly depends on the stress conditions in the solid, which can be either positive or negative. Adsorption of fluids onto the solid surface has a significant effect on interfacial free energy. In weak adsorption, the interfacial free energy is close to the solid-vacuum surface free energy. Strong adsorption results in a significant reduction in interfacial free energy.
RESUMEN
The aim of this study is to develop a tool to measure health literacy and attitude towards melanoma and to assess the tool in a group of adolescents through a multicenter cross-sectional survey. The concept, dimensionality, and item pool of the tool were developed by a focus group. The Delphi method was applied to determine the content validity. Newly enrolled students in five universities were invited to an online questionnaire survey. Items were selected according to correlation, factor loading, and item response parameters. Psychometric properties (reliability, construct validity, and measurement invariance) were assessed using McDonald's ω and confirmatory factor analysis (CFA), respectively. A total of 21,086 valid questionnaires were collected. The focus group drafted two subscales and 13 items. Content validity was good for all items (Kappa > 0.7). One item was removed from the tool owing to low factor loading and discrimination parameter. McDonald's ω of the subscales were 0.84 (health literacy) and 0.86 (attitude). Local dependencies were identified in CFA; after modification, the goodness-of-fit was satisfactory (comparative fit index, CFI > 0.98). The tool showed measurement invariance across subgroups of gender, ethnicity, and university (CFI change < 0.01 across models). The brief tool to measure health literacy and attitude towards nevus and melanoma shows good psychometric properties and measurement invariance. It can be used in further investigation.