RESUMEN
Cereal endosperm comprises an outer aleurone and an inner starchy endosperm. Although these two tissues have the same developmental origin, they differ in morphology, cell fate, and storage product accumulation, with the mechanism largely unknown. Here, we report the identification and characterization of rice thick aleurone 1 (ta1) mutant that shows an increased number of aleurone cell layers and increased contents of nutritional factors including proteins, lipids, vitamins, dietary fibers, and micronutrients. We identified that the TA1 gene, which is expressed in embryo, aleurone, and subaleurone in caryopses, encodes a mitochondrion-targeted protein with single-stranded DNA-binding activity named OsmtSSB1. Cytological analyses revealed that the increased aleurone cell layers in ta1 originate from a developmental switch of subaleurone toward aleurone instead of starchy endosperm in the wild type. We found that TA1/OsmtSSB1 interacts with mitochondrial DNA recombinase RECA3 and DNA helicase TWINKLE, and downregulation of RECA3 or TWINKLE also leads to ta1-like phenotypes. We further showed that mutation in TA1/OsmtSSB1 causes elevated illegitimate recombinations in the mitochondrial genome, altered mitochondrial morphology, and compromised energy supply, suggesting that the OsmtSSB1-mediated mitochondrial function plays a critical role in subaleurone cell-fate determination in rice.
Asunto(s)
Proteínas de Unión al ADN/genética , Mitocondrias/metabolismo , Mutación/genética , Oryza/genética , Proteínas de Plantas/genética , Endospermo/genética , Regulación de la Expresión Génica de las Plantas/genética , Fenotipo , Semillas/genética , Almidón/genéticaRESUMEN
Culture of Citrus sinensis embryogenic callus on the embryo-inducing medium (EIM) containing glycerol gave rise to a large number of embryos, whereas very few embryos were observed on the callus growth medium (CGM). In the current paper, attempts were made to investigate whether polyamine biosynthesis was involved in glycerol-mediated somatic embryogenesis. Quantification of free polyamines by high-performance liquid chromatography showed that the cultures on EIM had less putrescine than those on CGM. However, increase in spermidine and spermine was detected in cultures on EIM during the first 20d of culture, coincident with abundant somatic embryogenesis. The globular embryos contained more polyamines than embryos at other stages. Semi-quantitative reverse transcriptase-polymerase chain reaction assay showed that expression levels of all of the five key genes involved in polyamine biosynthesis, with the exception of S-adenosylmethionine decarboxylase, were induced in cultures on EIM, and that their transcriptional levels were increased with maturation of the embryos. Addition of alpha-difluoromethylornithine, a polyamine biosynthesis inhibitor, to EIM resulted in remarkable inhibition of somatic embryogenesis, concurrent with notable reduction of endogenous putrescine and spermidine, particularly at higher concentrations. Exogenous application of 1mM putrescine to EIM together with 5mM alpha-difluoromethylornithine led to dramatic enhancement of endogenous polyamines, which successfully restored somatic embryogenesis. All of these, collectively, demonstrated that free polyamines, at least spermidine and spermine herein, were involved in glycerol-mediated promotion of somatic embryogenesis, which will open a new avenue for establishing a sophisticated system for somatic embryogenesis based on the modulation of endogenous polyamines.