Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(1): 105556, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38097188

RESUMEN

A renewable source of porcine macrophages derived from pluripotent stem cells (PSCs) would be a valuable alternative to primary porcine alveolar macrophages (PAMs) in the research of host-pathogen interaction mechanisms. We developed an efficient and rapid protocol, within 11 days, to derive macrophages from porcine PSCs (pPSCs). The pPSC-derived macrophages (pPSCdMs) exhibited molecular and functional characteristics of primary macrophages. The pPSCdMs showed macrophage-specific surface protein expression and macrophage-specific transcription factors, similar to PAMs. The pPSCdMs also exhibited the functional characteristics of macrophages, such as endocytosis, phagocytosis, porcine respiratory and reproductive syndrome virus infection and the response to lipopolysaccharide stimulation. Furthermore, we performed transcriptome sequencing of the whole differentiation process to track the fate transitions of porcine PSCs involved in the signaling pathway. The activation of transforming growth factor beta signaling was required for the formation of mesoderm and the inhibition of the transforming growth factor beta signaling pathway at the hematopoietic endothelium stage could enhance the fate transformation of hematopoiesis. In summary, we developed an efficient and rapid protocol to generate pPSCdMs that showed aspects of functional maturity comparable with PAMs. pPSCdMs could provide a broad prospect for the platforms of host-pathogen interaction mechanisms.


Asunto(s)
Macrófagos Alveolares , Células Madre Pluripotentes , Porcinos , Animales , Endocitosis , Hematopoyesis/efectos de los fármacos , Lipopolisacáridos/farmacología , Macrófagos Alveolares/citología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virología , Mesodermo/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Transducción de Señal/efectos de los fármacos , Porcinos/virología , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factores de Tiempo
2.
FASEB J ; 38(4): e23481, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38334430

RESUMEN

Organoids are in vitro 3D models that are generated using stem cells to study organ development and regeneration. Despite the extensive research on lung organoids, there is limited information on pig lung cell generation or development. Here, we identified five epithelial cell types along with their characteristic markers using scRNA-seq. Additionally, we found that NKX2.1 and FOXA2 acted as the crucial core transcription factors in porcine lung development. The presence of SOX9/SOX2 double-positive cells was identified as a key marker for lung progenitor cells. The Monocle algorithm was used to create a pseudo-temporal differentiation trajectory of epithelial cells, leading to the identification of signaling pathways related to porcine lung development. Moreover, we established the differentiation method from porcine pluripotent stem cells (pPSCs) to SOX17+ FOXA2+ definitive endoderm (DE) and NKX2.1+ FOXA2+ CDX2- anterior foregut endoderm (AFE). The AFE is further differentiated into lung organoids while closely monitoring the differentiation process. We showed that NKX2.1 overexpression facilitated the induction of lung organoids and supported subsequent lung differentiation and maturation. This model offers valuable insights into studying the interaction patterns between cells and the signaling pathways during the development of the porcine lung.


Asunto(s)
Células Madre Pluripotentes , Animales , Porcinos , Pulmón/metabolismo , Organoides/metabolismo , Diferenciación Celular , Células Epiteliales/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(40): e2204716119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161929

RESUMEN

Despite pluripotent stem cells sharing key transcription factors, their maintenance involves distinct genetic inputs. Emerging evidence suggests that super-enhancers (SEs) can function as master regulatory hubs to control cell identity and pluripotency in humans and mice. However, whether pluripotency-associated SEs share an evolutionary origin in mammals remains elusive. Here, we performed comprehensive comparative epigenomic and transcription factor binding analyses among pigs, humans, and mice to identify pluripotency-associated SEs. Like typical enhancers, SEs displayed rapid evolution in mammals. We showed that BRD4 is an essential and conserved activator for mammalian pluripotency-associated SEs. Comparative motif enrichment analysis revealed 30 shared transcription factor binding motifs among the three species. The majority of transcriptional factors that bind to identified motifs are known regulators associated with pluripotency. Further, we discovered three pluripotency-associated SEs (SE-SOX2, SE-PIM1, and SE-FGFR1) that displayed remarkable conservation in placental mammals and were sufficient to drive reporter gene expression in a pluripotency-dependent manner. Disruption of these conserved SEs through the CRISPR-Cas9 approach severely impaired stem cell pluripotency. Our study provides insights into the understanding of conserved regulatory mechanisms underlying the maintenance of pluripotency as well as species-specific modulation of the pluripotency-associated regulatory networks in mammals.


Asunto(s)
Elementos de Facilitación Genéticos , Células Madre Pluripotentes , Animales , Proteínas de Ciclo Celular/metabolismo , Elementos de Facilitación Genéticos/genética , Euterios/genética , Femenino , Humanos , Ratones , Proteínas Nucleares/metabolismo , Placenta/metabolismo , Células Madre Pluripotentes/metabolismo , Embarazo , Porcinos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
BMC Genomics ; 25(1): 283, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500027

RESUMEN

MYB transcription factors play an extremely important regulatory role in plant responses to stress and anthocyanin synthesis. Cloning of potato StMYB-related genes can provide a theoretical basis for the genetic improvement of pigmented potatoes. In this study, two MYB transcription factors, StMYB113 and StMYB308, possibly related to anthocyanin synthesis, were screened under low-temperature conditions based on the low-temperature-responsive potato StMYB genes family analysis obtained by transcriptome sequencing. By analyzed the protein properties and promoters of StMYB113 and StMYB308 and their relative expression levels at different low-temperature treatment periods, it is speculated that StMYB113 and StMYB308 can be expressed in response to low temperature and can promote anthocyanin synthesis. The overexpression vectors of StMYB113 and StMYB308 were constructed for transient transformation tobacco. Color changes were observed, and the expression levels of the structural genes of tobacco anthocyanin synthesis were determined. The results showed that StMYB113 lacking the complete MYB domain could not promote the accumulation of tobacco anthocyanins, while StMYB308 could significantly promote the accumulation involved in tobacco anthocyanins. This study provides a theoretical reference for further study of the mechanism of StMYB113 and StMYB308 transcription factors in potato anthocyanin synthesis.


Asunto(s)
Solanum tuberosum , Factores de Transcripción , Factores de Transcripción/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Antocianinas , Temperatura , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética
5.
Plant Cell Physiol ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625713

RESUMEN

Altitude is an important ecological factor affecting plant physiology and ecology, material metabolism and gene expression. Tuber color changes were observed in purple and red potatoes growing at four different elevations ranging from 1800±50 to 3300±50 meters in the Tiger Leaping Gorge area of Yunnan Province. The results showed that the TPC, TFC, TAC and biological yield of anthocyanin increased with increasing altitude until 2800 ± 50 m, and the highest anthocyanin contents were detected in the purple potato Huaxinyangyu and the red potato Jianchuanhong at the flowering stage and budding stage, respectively. Combined transcriptomic and metabolomic analyses revealed that the content and diversity of flavonoids are associated with gene expression via the promotion of propane metabolism to improve potato adaptation to different altitudes. These results provide a foundation for understanding the coloring mechanism and creating new potato germplasms with high resistance and good quality via genetic manipulation.

6.
Antimicrob Agents Chemother ; : e0156323, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647294

RESUMEN

EVER206 (also known as SPR206) is a novel polymyxin analog that has shown in vitro potency and in vivo efficacy against multidrug-resistant (MDR) Gram-negative pathogens. This randomized, double-blinded, placebo-controlled, Phase I study evaluated the safety, tolerability, and pharmacokinetics of EVER206 in healthy Chinese subjects. After single administration of 50-300 mg EVER206, the Cmax ranged from 3.94 to 25.82 mg/L, and the AUC0-inf ranged from 12.42 to 101.67 h·mg/L. The plasma exposure displayed a linear relationship with the dose administered. After administration of 75 and 100 mg of EVER206 every 8 hours (q8 hour), a steady state was achieved on Day 2. The accumulation ratios of Cmax and AUC from Day 1 to Day 7 were in the range of 1.12 to 1.3. The elimination half-lives ranged from 2.86 to 4.32 hours in the single-ascending-dose (SAD) study and 4.71 to 6.18 hours in the multiple-ascending-dose (MAD) study. The urinary excretion of unchanged EVER206 increased with the dose, with the mean cumulative fraction ranging from 23.70% to 47.10%. EVER206 was safe and well-tolerated in Chinese healthy subjects. No severe treatment emerging adverse events (TEAEs), serious adverse events, or TEAEs leading to discontinuation were reported. The results of the present study demonstrated a similar safety profile of EVER206 with data reported in an earlier study on SPR206-101. The exposure of EVER206 in Chinese healthy subjects was higher than that in Australian healthy subjects. These results could enable further clinical development of EVER206 in Chinese patients with severe MDR Gram-negative pathogen infections.CLINICAL TRIALSThis study was registered at the Chinese Clinical Trial Registry under identifier ChiCTR2200056692.

7.
Antimicrob Agents Chemother ; 68(1): e0133023, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38054726

RESUMEN

FL058 is a novel diazabicyclooctane ß-lactamase inhibitor. This first-in-human study evaluated the safety, tolerability, and population pharmacokinetic (PK)/pharmacodynamic target attainment analysis of FL058 alone and in combination with meropenem in healthy subjects. The results showed that the maximum tolerated dose of FL058 was 3,000 mg after single-dose infusion. FL058 in combination with meropenem did not cause any grade 3 or higher adverse event when the dose was escalated up to 1,000 mg/2,000 mg. FL058 exposure PK parameters showed dose proportionality. FL058 was excreted primarily in urine. No significant PK interaction was found between FL058 and meropenem. Population PK model analysis indicated that the PK profiles of FL058 and meropenem were consistent with the two-compartment model. The impact of covariates, creatinine clearance, concomitant use of meropenem, body weight, sex, and FL058 dose, on FL058 exposure was less than 10%. FL058/meropenem combination was safe and well tolerated up to a 1,000-mg/2,000-mg dose in healthy adults. The recommended minimum dose of FL058/meropenem combination was 500 mg/1,000 mg by intravenous infusion over 2 h every 8 h based on target attainment analysis. The good safety, tolerability, and satisfactory PK profiles of FL058 alone and in combination with meropenem in this first-in-human study will support further clinical development of FL058 in combination with meropenem in patients with target infections (ClinicalTrials.gov identifiers: NCT05055687, NCT05058118, and NCT05058105).


Asunto(s)
Antibacterianos , Inhibidores de beta-Lactamasas , Adulto , Humanos , Meropenem/farmacología , Antibacterianos/farmacocinética , Voluntarios Sanos , Inhibidores de beta-Lactamasas/efectos adversos , Infusiones Intravenosas
8.
BMC Plant Biol ; 24(1): 274, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605295

RESUMEN

Temperature is one of the important environmental factors affecting plant growth, yield and quality. Moreover, appropriately low temperature is also beneficial for tuber coloration. The red potato variety Jianchuanhong, whose tuber color is susceptible to temperature, and the purple potato variety Huaxinyangyu, whose tuber color is stable, were used as experimental materials and subjected to 20 °C (control check), 15 °C and 10 °C treatments during the whole growth period. The effects of temperature treatment on the phenotype, the expression levels of structural genes related to anthocyanins and the correlations of each indicator were analyzed. The results showed that treatment at 10 °C significantly inhibited the potato plant height, and the chlorophyll content and photosynthetic parameters in the leaves were reduced, and the enzyme activities of SOD and POD were significantly increased, all indicating that the leaves were damaged. Treatment at 10 °C also affected the tuberization of Huaxinyangyu and reduced the tuberization and coloring of Jianchuanhong, while treatment at 15 °C significantly increased the stem diameter, root-to-shoot ratio, yield and content of secondary metabolites, especially anthocyanins. Similarly, the expression of structural genes were enhanced in two pigmented potatoes under low-temperature treatment conditions. In short, proper low temperature can not only increase yield but also enhance secondary metabolites production. Previous studies have not focused on the effects of appropriate low-temperature treatment during the whole growth period of potato on the changes in metabolites during tuber growth and development, these results can provide a theoretical basis and technical guidance for the selection of pigmented potatoes with better nutritional quality planting environment and the formulation of cultivation measures.


Asunto(s)
Solanum tuberosum , Temperatura , Solanum tuberosum/metabolismo , Antocianinas/metabolismo , Frío , Fotosíntesis , Tubérculos de la Planta/genética
9.
Mol Cancer ; 22(1): 179, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932766

RESUMEN

BACKGROUND: Noncoding RNAs such as circular RNAs (circRNAs) are abundant in the human body and influence the occurrence and development of various diseases. Non-small cell lung cancer (NSCLC) is one of the most common malignant cancers. Information on the functions and mechanism of circRNAs in lung cancer is limited; thus, the topic needs more exploration. The purpose of this study was to identify aberrantly expressed circRNAs in lung cancer, unravel their roles in NSCLC progression, and provide new targets for lung cancer diagnosis and therapy. METHODS: High-throughput sequencing was used to analyze differential circRNA expression in patients with lung cancer. qRT‒PCR was used to determine the level of circHERC1 in lung cancer tissues and plasma samples. Gain- and loss-of-function experiments were implemented to observe the impacts of circHERC1 on the growth, invasion, and metastasis of lung cancer cells in vitro and in vivo. Mechanistically, dual luciferase reporter assays, fluorescence in situ hybridization (FISH), RNA immunoprecipitation (RIP) and RNA pull-down experiments were performed to confirm the underlying mechanisms of circHERC1. Nucleocytoplasmic localization of FOXO1 was determined by nucleocytoplasmic isolation and immunofluorescence. The interaction of circHERC1 with FOXO1 was verified by RNA pull-down, RNA immunoprecipitation (RIP) and western blot assays. The proliferation and migration of circHERC1 in vivo were verified by subcutaneous and tail vein injection in nude mice. RESULTS: CircHERC1 was significantly upregulated in lung cancer tissues and cells, ectopic expression of circHERC1 strikingly facilitated the proliferation, invasion and metastasis, and inhibited the apoptosis of lung cancer cells in vitro and in vivo. However, knockdown of circHERC1 exerted the opposite effects. CircHERC1 was mainly distributed in the cytoplasm. Further mechanistic research indicated that circHERC1 acted as a competing endogenous RNA of miR-142-3p to relieve the repressive effect of miR-142-3p on its target HMGB1, activating the MAPK/ERK and NF-κB pathways and promoting cell migration and invasion. More importantly, we found that circHERC1 could bind FOXO1 and sequester it in the cytoplasm, adjusting the feedback AKT pathway. The accumulation of FOXO1 in the cytosol and nuclear exclusion promoted cell proliferation and inhibited apoptosis. CircHERC1 is a new circRNA that promotes tumor function in NSCLC and may serve as a potential prognostic biomarker and therapeutic target for NSCLC. CONCLUSIONS: CircHERC1 is a new circRNA that promotes tumor function in NSCLC and may serve as a potential diagnosis biomarker and therapeutic target for NSCLC. Our findings indicate that circHERC1 facilitates the invasion and metastasis of NSCLC cells by regulating the miR-142-3p/HMGB1 axis and activating the MAPK/ERK and NF-κB pathways. In addition, circHERC1 can promote cell proliferation and inhibit apoptosis by sequestering FOXO1 in the cytoplasm to regulate AKT activity and BIM transcription.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proteína Forkhead Box O1 , Proteína HMGB1 , Neoplasias Pulmonares , MicroARNs , ARN Circular , Animales , Humanos , Ratones , Biomarcadores , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Citoplasma/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteína HMGB1/metabolismo , Hibridación Fluorescente in Situ , Neoplasias Pulmonares/genética , Ratones Desnudos , MicroARNs/genética , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Circular/genética , Proteína Forkhead Box O1/metabolismo , Ubiquitina-Proteína Ligasas/genética
10.
Apoptosis ; 28(3-4): 471-484, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36574090

RESUMEN

Circular RNAs (circRNAs) are a specialized circular structure, are deregulated in cancers and play essential roles in biological processes involved in tumor progression. However, the mechanism by which circRNAs affect lung tumorigenesis and progression remains largely unexplored. To investigate the role of circRNA in lung cancer, circRNA expression profile was screened by bioinformatics analysis. The levels of circTAB2, miR-3142, and GLIS family zinc finger 2 (GLIS2) were measured by quantitate real-time (qRT-PCR) or western blot. Cell proliferation, apoptosis, migration and invasion were detected by EdU, flow cytometry, and transwell assays, respectively. Bioinformatics, western blot, RIP, pull down, dual luciferase reporter and rescue experiments were used to verify the direct relationship between miR-3142 and circTAB2 or GLIS2. The xenograft assays were used to assess the role of circTAB2 in vivo.CircTAB2 exhibited low expression in cancer tissues. Gain and loss-of-function assays indicated that circTAB2 could inhibit cell proliferation, migration and invasion. Functional studies revealed that circTAB2 acted as a miRNA sponge, directly interacted with miR-3142 and consequently regulated GLIS2 /AKT. Taken together, circTAB2 serves as an inhibitory role in lung cancer through a novel circTAB2 /miR-3142 /GLIS2 /AKT pathway and could be exploited a novel marker in lung cancer.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Humanos , Apoptosis , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/patología , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Circular/genética , ARN Circular/metabolismo
11.
Antimicrob Agents Chemother ; 67(3): e0129522, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36809048

RESUMEN

Holybuvir is a novel pangenotypic hepatitis C virus NS5B inhibitor. This first in-human study aimed to evaluate the pharmacokinetics (PK), safety, and tolerability of holybuvir and its metabolites and the effect of food on the PK of holybuvir and its metabolites in healthy Chinese subjects. A total of 96 subjects were enrolled in this study which included (i) a single-ascending-dose (SAD) study (100 to 1,200 mg), (ii) a food-effect (FE) study (600 mg), and (iii) a multiple-dose (MD) study (400 and 600 mg once daily for 14 days). The results showed that single oral administration of holybuvir at doses up to 1,200 mg was well tolerated. Holybuvir was rapidly absorbed and metabolized in the human body, which was consistent with the characteristics of holybuvir as a prodrug. PK analysis showed that Cmax and area under the curve (AUC) increased with dose in no dose-proportional manner after a single-dose administration (100 to 1,200 mg). Although high-fat meals did change the PK of holybuvir and its metabolites, clinical significance of changes in PK parameters induced by eating a high-fat diet would be further confirmed. Following multiple-dose administration, accumulation of metabolites SH229M4 and SH229M5-sul was observed. The favorable PK and safety results support the further development of holybuvir for patients with HCV. (This study was registered at Chinadrugtrials.org under identifier CTR20170859.).


Asunto(s)
Hepatitis C , Profármacos , Humanos , Hepacivirus/genética , Pueblos del Este de Asia , Hepatitis C/tratamiento farmacológico , Administración Oral , Área Bajo la Curva , Profármacos/farmacocinética , Voluntarios Sanos , Relación Dosis-Respuesta a Droga , Método Doble Ciego
12.
Opt Express ; 31(22): 36796-36809, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-38017822

RESUMEN

We propose a scheme to manipulate strong and nonreciprocal photon blockades in asymmetrical Fabry-Perot cavity with a Λ-type three-level atom. Utilizing the mechanisms of both conventional and unconventional blockade, the strong photon blockade is achieved by the anharmonic eigenenergy spectrum brought by Λ-type atom and the destructive quantum interference effect induced by a microwave field. By optimizing the system parameters, the manipulation of strong photon blockade over a wide range of cavity detuning can be realized. Using spatial symmetry breaking introduced by the asymmetry of cavity, the direction-dependent nonreciprocal photon blockade can be achieved, and the nonreciprocity can reach the maximum at optimal cavity detuning. In particular, manipulating the occurring position of nonreciprocal photon blockade can be implemented by simply adjusting the cavity detuning. Our scheme provides feasible access for generating high-quality nonreciprocal single-photon sources.

13.
J Immunol ; 206(7): 1597-1608, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33579725

RESUMEN

Coronavirus disease 2019 (COVID-19) is associated with immune dysregulation and cytokine storm. Exploring the immune-inflammatory characteristics of COVID-19 patients is essential to reveal pathogenesis and predict progression. In this study, COVID-19 patients showed decreased CD3+, CD4+, and CD8+ T cells but increased neutrophils in circulation, exhibiting upregulated neutrophil-to-lymphocyte and neutrophil-to-CD8+ T cell ratio. IL-6, TNF-α, IL-1ß, IL-18, IL-12/IL-23p40, IL-10, Tim-3, IL-8, neutrophil extracellular trap-related proteinase 3, and S100A8/A9 were elevated, whereas IFN-γ and C-type lectin domain family 9 member A (clec9A) were decreased in COVID-19 patients compared with healthy controls. When compared with influenza patients, the expressions of TNF-α, IL-18, IL-12/IL-23p40, IL-8, S100A8/A9 and Tim-3 were significantly increased in critical COVID-19 patients, and carcinoembryonic Ag, IL-8, and S100A8/A9 could serve as clinically available hematologic indexes for identifying COVID-19 from influenza. Moreover, IL-6, IL-8, IL-1ß, TNF-α, proteinase 3, and S100A8/A9 were increased in bronchoalveolar lavage fluid of severe/critical patients compared with moderate patients, despite decreased CD4+ T cells, CD8+ T cells, B cells, and NK cells. Interestingly, bronchoalveolar IL-6, carcinoembryonic Ag, IL-8, S100A8/A9, and proteinase 3 were found to be predictive of COVID-19 severity and may serve as potential biomarkers for predicting COVID-19 progression and potential targets in therapeutic intervention of COVID-19.


Asunto(s)
COVID-19 , Mediadores de Inflamación , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Anciano , COVID-19/sangre , COVID-19/inmunología , Calgranulina A/sangre , Calgranulina A/inmunología , Calgranulina B/sangre , Calgranulina B/inmunología , Citocinas/sangre , Citocinas/inmunología , Progresión de la Enfermedad , Femenino , Receptor 2 Celular del Virus de la Hepatitis A/sangre , Receptor 2 Celular del Virus de la Hepatitis A/inmunología , Humanos , Mediadores de Inflamación/sangre , Mediadores de Inflamación/inmunología , Recuento de Leucocitos , Masculino , Persona de Mediana Edad , Mieloblastina/sangre , Mieloblastina/inmunología , Estudios Retrospectivos , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo
14.
J Asthma ; 60(1): 203-211, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35168451

RESUMEN

Club cell 10-kDa protein (CC10) is a documented biomarker for airway obstructive diseases. Primarily produced by nonciliated club cells in the distal airway and in nasal epithelial cells, CC10 suppresses Th2 cell differentiation and Th2 cytokine production. In this study, we aimed to determine whether CC10 can also be used as an alternative biomarker for identifying Type 2 (T2) asthma.74 patients with asthma, and 24 healthy controls were enrolled in the study. T2-high asthma was defined as elevation in two or more biomarkers, such as sputum eosinophilia ≥ 3%, high blood eosinophils ≥ 300/µL, or high FeNO ≥ 30 ppb. T2-low asthma was defined as no elevation in biomarkers. Enzyme-linked immunosorbent assay (ELISA) was used to assess the CC10 levels in plasma.The plasma CC10 level in patients with T2-high asthma was lower than that of patients with T2-low asthma and healthy controls (P < 0.05). To distinguish between T2-high and T2-low phenotype in patients with asthma, a receiver-operating characteristic (ROC) analysis was performed. It showed a sensitivity of 58.1% and specificity of 78.0% when using 22.74 ng/ml of plasma CC10. Correlation analysis indicated that the plasma CC10 level was inversely correlated with sputum eosinophil, blood eosinophil, and FeNO, and positively correlated with log PD20. However, no correlation with sputum neutrophil percentages, macrophage percentages, IgE, or lung function was found.Plasma CC10 is potentially useful in predicting T2-high and T2-low asthma. Lower plasma CC10 was associated with enhanced airway hyperresponsiveness, and Type 2 inflammation.


Asunto(s)
Asma , Eosinofilia , Humanos , Eosinófilos/metabolismo , Fenotipo , Neutrófilos , Biomarcadores , Esputo , Óxido Nítrico/metabolismo
15.
Skin Pharmacol Physiol ; 36(2): 76-86, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36580897

RESUMEN

INTRODUCTION: SHR0302 is a highly selective JAK1 inhibitor. This study aimed to investigate the safety, tolerability, and pharmacokinetics of single and multiple-dose topical skin application of SHR0302 base ointment in healthy adult subjects. METHODS: This phase I clinical trial (registration number: CTR20192188) consisted of two parts. Part 1 was a single-dose ascending study with four dose levels in 32 healthy Australian adults (8 subjects in each dose group). All Australian subjects were randomized 3:1 to a single-dose topical skin application of SHR0302 base ointment or placebo. The dose escalated from 1% SHR0302 base ointment on 3% of body surface area (BSA) to 2% SHR0302 base ointment on 20% of BSA. Part 2 combined single and multiple-dose ascension studies with two dose levels in 20 healthy Chinese adults (10 subjects in each dose group). All Chinese subjects were randomized 4:1 to a combination of single and multiple doses for consecutive 10 days of topical application of 1% SHR0302 base ointment on 20% BSA or 2% SHR0302 base ointment on 20% BSA. The safety and pharmacokinetics of the SHR0302 base ointment were evaluated. RESULTS: The incidence of treatment-emergent adverse events (TEAEs) in both parts was comparable between the SHR0302 base ointment group and the vehicle group (part 1: 33.3% vs. 37.5%; part 2: 56.3% vs. 75.0%). All TEAEs were transient, recovered, and equally well-tolerated in the two racial groups. The overall absorption of the SHR0302 base ointment was slow after topical application, with Tmax>10 h. After a single dose of the SHR0302 base ointment, drug exposure in healthy Australian and Chinese subjects increased nonlinearly with the increase in the administration area and drug content. Drug exposure increased in a less-than-dose-proportional manner within the dose range tested. Due to differences in the clinical practice of topical application, the Tmax of the drug in Australian subjects was earlier than in Chinese subjects, but the overall extent of absorption seemed comparable in Australian and Chinese subjects (with comparable AUC0-t). CONCLUSION: The SHR0302 base ointment (either single or multiple doses) was well tolerated and safe, with no racial disparity. KEY MESSAGE: The SHR0302 base ointment (either single or multiples doses) was well tolerated and safe.


Asunto(s)
Pomadas , Humanos , Adulto , Relación Dosis-Respuesta a Droga , Australia , Voluntarios Sanos , Método Doble Ciego
16.
Angew Chem Int Ed Engl ; 62(48): e202313787, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37843427

RESUMEN

Development of highly efficient and metal-free photocatalysts for bacterial inactivation under natural light is a major challenge in photocatalytic antibiosis. Herein, we developed an acidizing solvent-thermal approach for inserting a non-conjugated ethylenediamine segment into the conjugated planes of 3,4,9,10-perylene tetracarboxylic anhydride to generate a photocatalyst containing segregated π-conjugation units (EDA-PTCDA). Under natural light, EDA-PTCDA achieved 99.9 % inactivation of Escherichia coli and Staphylococcus aureus (60 and 45 min), which is the highest efficiency among all the natural light antibacterial reports. The difference in the surface potential and excited charge density corroborated the possibility of a built-in electron-trap effect of the non-conjugated segments of EDA-PTCDA, thus forming a highly active EDA-PTDA/bacteria interface. In addition, EDA-PTCDA exhibited negligible toxicity and damage to normal tissue cells. This catalyst provides a new opportunity for photocatalytic antibiosis under natural light conditions.


Asunto(s)
Electrones , Luz , Staphylococcus aureus , Catálisis
17.
J Cell Physiol ; 237(12): 4531-4543, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36288570

RESUMEN

Porcine embryonic fibroblasts (PEFs) can be directly reprogrammed into porcine induced pluripotent stem cells (piPSCs). However, the reprogramming process is generally lengthy and inefficient. Here, we established a fast and efficient induction system of piPSCs from porcine Sertoli cells (SCs) via forced expression of pig Yamanaka factors. The alkaline phosphatase (AP)-positive colonies from SCs developed on Day 3 after lentivirus infection, and were expanded and then picked up on Day 7, whereas reprogramming process from PEFs did not show any colonies in the same period. The picked piPSCs strongly expressed pluripotent genes, had the differentiation capacity to three germ layers, and could be also induced into primordial germ cell-like cells. Screening for transcription factor combinations showed that POU class 5 homeobox 1 (OCT4) is the core factor for AP-positive colony formation, and two factors (OCT4 and c-MYC) could successfully reprogram SCs into piPSCs. We then compared the RNA-sequencing data of piPSCs derived from SCs and PEFs, and found that the most significant difference was the activation of Transforming Growth Factor ß signaling pathway. We also compared the RNA levels of SCs and PEFs, and found that SCs exhibited higher Wnt signaling activity and Bone Morphogenetic Protein 4 expression than PEFs, which might be correlated with higher cell proliferation rate and reprogramming efficiency. In summary, the data demonstrated that starting cell sources of piPSCs significantly affect reprogramming dynamics and SCs could serve as cell sources for efficient reprogramming.


Asunto(s)
Reprogramación Celular , Fibroblastos , Células Madre Pluripotentes Inducidas , Células de Sertoli , Animales , Masculino , Diferenciación Celular , Células Cultivadas , Fibroblastos/citología , Células Madre Pluripotentes Inducidas/citología , ARN/genética , Células de Sertoli/citología , Porcinos
18.
Clin Immunol ; 242: 109082, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35901921

RESUMEN

Although C-type lectin domain family 9A (Clec9A) on conventional type 1 dendritic cells (cDC1s) plays a critical role in cytotoxic CD8+ T cell response in cancers and viral infections, its role in chronic obstructive pulmonary disease (COPD) is unknown. We measured the expression of Clec9A in sera, bronchoalveolar lavage fluid (BALF), and peripheral blood mononuclear cells (PBMCs) from controls and COPD patients. The percentages of Clec9A+ DC and cytotoxic CD8+ T cell in the BALF were determined by flow cytometry between patients with COPD and non-obstructive chronic bronchitis (NOCB). Compared with healthy individuals, the serum levels of Clec9A were increased at different stages of COPD patients, and the mRNA and protein levels of Clec9A were both increased in COPD patients at GOLD stages III-IV. The percentage of Clec9A+ DCs was also increased in the BALF of COPD patients compared with NOCB patients. Moreover, enhanced Clec9A+ DCs recruitment was positively correlated with cytotoxic CD8+ T cell response in the BALF of COPD patients. This study suggests that Clec9A+ DCs participate in the CD8+ T cell-mediated chronic airway inflammation in COPD.


Asunto(s)
Lectinas Tipo C , Leucocitos Mononucleares , Enfermedad Pulmonar Obstructiva Crónica , Receptores Mitogénicos , Líquido del Lavado Bronquioalveolar , Linfocitos T CD8-positivos/metabolismo , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Leucocitos Mononucleares/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Receptores Mitogénicos/genética , Receptores Mitogénicos/metabolismo , Linfocitos T Citotóxicos
19.
Antimicrob Agents Chemother ; 66(6): e0243021, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35575579

RESUMEN

This study aimed to build a population pharmacokinetic (PopPK) model for contezolid tablet (MRX-I) in healthy subjects and adults with complicated skin and soft-tissue infections (cSSTIs) to further evaluate the efficacy and safety of contezolid and recommend the optimal dosing regimen based on pharmacokinetic/pharmacodynamic (PK/PD) analysis. PopPK analysis was performed using a nonlinear mixed-effects model (NONMEM) to examine the effects of age, body weight, sex, liver and renal functions, albumin, food, dosage strength, and subject type on the PK parameters of contezolid. PK/PD analysis was combined with the MIC of contezolid, clinical/microbiological efficacy, and nonclinical study data. Adverse events (AEs) and study drug-related AEs reported were summarized to examine the relationship between contezolid exposure level and safety measures. A two-compartment model was built. An exponential model was used to describe the interindividual variation. A proportional model was used to describe the intraindividual variation of PK parameters. Good clinical and microbiological efficacy are expected for the infections caused by S. aureus when contezolid is administered at 600 mg or 800 mg every 12 h (q12h). The area under the concentration-time curve from 0 to 24 h at steady state and maximum concentration of drug in serum at steady state of contezolid did not show significant association with the incidence of any AE. The dosing regimen of contezolid at 800 mg q12h administered postprandially for 7 to 14 days is expected to achieve satisfactory clinical and microbiological efficacy in cSSTIs, which is slightly better than that of 600 mg contezolid. This administration has been added to the prescribing information of contezolid tablets.


Asunto(s)
Farmacología Clínica , Infecciones de los Tejidos Blandos , Adulto , Antibacterianos/farmacología , China , Humanos , Oxazolidinonas , Piridonas , Infecciones de los Tejidos Blandos/tratamiento farmacológico , Staphylococcus aureus
20.
Respir Res ; 23(1): 120, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35550579

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a progressive disease characterized by chronic inflammation and airway remodeling. Human epididymis protein 4 (HE4) plays a critical role in various inflammatory or fibrotic diseases. However, the role of HE4 in COPD remains unidentified. METHODS: HE4 expression was determined in the lung tissues from COPD patients and cigarette smoke (CS)-exposed mice using immunohistochemical staining, qPCR, or western blot. The plasma level of HE4 was detected by ELISA. The regulations of HE4 in the expressions of CS extract (CSE)-induced inflammatory cytokines in human bronchial epithelial cells (HBE) were investigated through knockdown or overexpression of HE4. The role of secretory HE4 (sHE4) in the differentiation and proliferation in human pulmonary fibroblast cells (HPF) was explored via qPCR, western blot, CCK8 assay or 5-ethynyl-2'-deoxyuridine (EdU) staining. The probe of related mechanism in CSE-induced HE4 increase in HBE was conducted by administrating N-acetylcysteine (NAC). RESULTS: HE4 was up-regulated in both the lung tissue and plasma of COPD patients relative to controls, and the plasma HE4 was negatively associated with lung function in COPD patients. The same enhanced HE4 expression was verified in CS-exposed mice and CSE-induced HBE, but CSE failed to increase HE4 expression in HPF. In vitro experiments showed that reducing HE4 expression in HBE alleviated CSE-induced IL-6 release while overexpressing HE4 facilitated IL-6 expression, mechanistically through affecting phosphorylation of NFκB-p65, whereas intervening HE4 expression had no distinctive influence on IL-8 secretion. Furthermore, we confirmed that sHE4 promoted fibroblast-myofibroblast transition, as indicated by promoting the expression of fibronectin, collagen I and α-SMA via phosphorylation of Smad2. EdU staining and CCK-8 assay demonstrated the pro-proliferative role of sHE4 in HPF, which was further confirmed by enhanced expression of survivin and PCNA. Pretreatment of NAC in CSE or H2O2-induced HBE mitigated HE4 expression. CONCLUSIONS: Our study indicates that HE4 may participate in airway inflammation and remodeling of COPD. Cigarette smoke enhances HE4 expression and secretion in bronchial epithelium mediated by oxidative stress. Increased HE4 promotes IL-6 release in HBE via phosphorylation of NFκB-p65, and sHE4 promotes fibroblastic differentiation and proliferation.


Asunto(s)
Interleucina-6 , Enfermedad Pulmonar Obstructiva Crónica , Remodelación de las Vías Aéreas (Respiratorias) , Animales , Línea Celular , Células Epiteliales/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Inflamación/metabolismo , Interleucina-6/metabolismo , Ratones , Proteína 2 de Dominio del Núcleo de Cuatro Disulfuros WAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA