Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Trends Immunol ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39181734

RESUMEN

The mammalian intestine harbors abundant T cells with high motility, where these cells can affect both intestinal and extraintestinal disorders. Growing evidence shows that gut-derived T cells migrate to extraintestinal organs, contributing to the pathogenesis of certain autoimmune diseases, including type 1 diabetes (T1D) and multiple sclerosis (MS). However, three key questions require further elucidation. First, how do intestinal T cells egress from the intestine? Second, how do gut-derived T cells enter organs outside the gut? Third, what is the pathogenicity of gut-derived T cells and their correlation with the gut microenvironment? In this Opinion, we propose answers to these questions. Understanding the migration and functional regulation of gut-derived T cells might inform precise targeting for achieving safe and effective approaches to treat certain extraintestinal autoimmune diseases.

2.
Proc Natl Acad Sci U S A ; 120(2): e2213528120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595700

RESUMEN

Flow batteries are a promising energy storage solution. However, the footprint and capital cost need further reduction for flow batteries to be commercially viable. The flow cell, where electron exchange takes place, is a central component of flow batteries. Improving the volumetric power density of the flow cell (W/Lcell) can reduce the size and cost of flow batteries. While significant progress has been made on flow battery redox, electrode, and membrane materials to improve energy density and durability, conventional flow batteries based on the planar cell configuration exhibit a large cell size with multiple bulky accessories such as flow distributors, resulting in low volumetric power density. Here, we introduce a submillimeter bundled microtubular (SBMT) flow battery cell configuration that significantly improves volumetric power density by reducing the membrane-to-membrane distance by almost 100 times and eliminating the bulky flow distributors completely. Using zinc-iodide chemistry as a demonstration, our SBMT cell shows peak charge and discharge power densities of 1,322 W/Lcell and 306.1 W/Lcell, respectively, compared with average charge and discharge power densities of <60 W/Lcell and 45 W/Lcell, respectively, of conventional planar flow battery cells. The battery cycled for more than 220 h corresponding to >2,500 cycles at off-peak conditions. Furthermore, the SBMT cell has been demonstrated to be compatible with zinc-bromide, quinone-bromide, and all-vanadium chemistries. The SBMT flow cell represents a device-level innovation to enhance the volumetric power of flow batteries and potentially reduce the size and cost of the cells and the entire flow battery.


Asunto(s)
Líquidos Corporales , Bromuros , Tamaño de la Célula , Fibras de la Dieta , Zinc
3.
Funct Integr Genomics ; 24(2): 51, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446273

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is a malignant tumor of the gastrointestinal tract with high morbidity and mortality. There is growing evidence that GRK2 plays a key role in the development and progression of several human cancers. However, the role and potential mechanisms of GRK2 in colon cancer (COAD) are unclear. METHODS: The expression data of GRK2 was downloaded from The Cancer Genome Atlas database (TCGA). Variation in GRK2 was explored based on the cBioPortal database. The TIMER and TISCH2 databases were used to analyse the relationship between GRK2 expression and tumor immune microenvironment (TME). A log-rank test was used to compare the prognosis of high and low expression of GRK2 groups. Detecting the effect of GRK2 on cell cycle and apoptosis induced by 5-Fluorouracil (5-FU) through the flow cytometry and detection of apoptosis-related molecules by Western blot. RESULTS: We demonstrated that GRK2 has a potential oncogenic role. GRK2 expression was upregulated in COAD, which predicted poorer overall survival in COAD patients. The cellular assays showed that GRK2 plays a role in the growth and proliferation of colon cancer cells, also the expression of GRK2 have relationship with the sensitivity of 5-FU and cell cycle progression. CONCLUSIONS: Our results suggest that high GRK2 expression is closely associated with the development of tumor and affects the 5-FU sensitivity.


Asunto(s)
Neoplasias del Colon , Humanos , Apoptosis , Fluorouracilo , Microambiente Tumoral
4.
Small ; 20(15): e2311510, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38267811

RESUMEN

Zinc-bromine (Zn-Br) redox provides a high energy density and low-cost option for next-generation energy storage systems, and polybromide diffusion remains a major issue leading to Zn anode corrosion, dendrite growth, battery self-discharge and limited electrochemical performance. A dual-functional Alginate-Graphene Oxide (AGO) hydrogel coating is proposed to prevent polybromide corrosion and suppress dendrite growth in Zn-Br batteries through negatively charged carboxyl groups and enhanced mechanical properties. The battery with anode of plain zinc coated with AGO (Zn]AGO) survives a severely corrosive environment with higher polybromide concentration than usual without a membrane, and achieves 80 cycles with 100% Coulombic and 80.65% energy efficiencies, four times compared to plain Zn anode. The promising performance is comparable to typical Zn-Br batteries using physical membranes, and the AGO coating concept can be well adapted to various Zn-Br systems to promote their applications.

5.
FASEB J ; 37(4): e22892, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36951647

RESUMEN

Epidermal nerve fiber regeneration and sensory function are severely impaired in skin wounds of diabetic patients. To date, however, research on post-traumatic nerve regeneration and sensory reconstruction remains scarce, and effective clinical therapeutics are lacking. In the current study, localized treatment with RL-QN15, considered as a drug candidate for intervention in skin wounds in our previous research, accelerated the healing of full-thickness dorsal skin wounds in diabetic mice and footpad skin wounds in diabetic rats. Interestingly, nerve density and axonal plasticity in the skin wounds of diabetic rats and mice, as well as plantar sensitivity in diabetic rats, were markedly enhanced by RL-QN15 treatment. Furthermore, RL-QN15 promoted the proliferation, migration, and axonal length of neuron-like PC12 cells, which was likely associated with activation of the phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) signaling pathway. The therapeutic effects of RL-QN15 were partially reduced by blocking the PI3K/Akt signaling pathway with the inhibitor LY294002. Thus, RL-QN15 showed positive therapeutic effects on the distribution of epidermal nerve fibers and stimulated the recovery of sensory function after cutaneous injury. This study lays a solid foundation for the development of RL-QN15 peptide-based therapeutics against diabetic skin wounds.


Asunto(s)
Diabetes Mellitus Experimental , Proteínas Proto-Oncogénicas c-akt , Ratas , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas , Piel , Fibras Nerviosas/metabolismo , Sensación , Péptidos/farmacología , Regeneración Nerviosa/fisiología
6.
Cell Commun Signal ; 22(1): 302, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831335

RESUMEN

The ubiquitination-mediated protein degradation exerts a vital role in the progression of multiple tumors. NEDD4L, which belongs to the E3 ubiquitin ligase NEDD4 family, is related to tumor genesis, metastasis and drug resistance. However, the anti-tumor role of NEDD4L in esophageal carcinoma, and the potential specific recognition substrate remain unclear. Based on public esophageal carcinoma database and clinical sample data, it was discovered in this study that the expression of NEDD4L in esophageal carcinoma was apparently lower than that in atypical hyperplastic esophageal tissue and esophageal squamous epithelium. Besides, patients with high expression of NEDD4L in esophageal carcinoma tissue had longer progression-free survival than those with low expression. Experiments in vivo and in vitro also verified that NEDD4L suppressed the growth and metastasis of esophageal carcinoma. Based on co-immunoprecipitation and proteome analysis, the NEDD4L ubiquitination-degraded protein ITGB4 was obtained. In terms of the mechanism, the HECT domain of NEDD4L specifically bound to the Galx-ß domain of ITGB4, which modified the K915 site of ITGB4 in an ubiquitination manner, and promoted the ubiquitination degradation of ITGB4, thus suppressing the malignant phenotype of esophageal carcinoma.


Asunto(s)
Progresión de la Enfermedad , Neoplasias Esofágicas , Integrina beta4 , Ubiquitina-Proteína Ligasas Nedd4 , Proteolisis , Ubiquitinación , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Humanos , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/genética , Animales , Línea Celular Tumoral , Integrina beta4/metabolismo , Integrina beta4/genética , Ratones Desnudos , Ratones , Proliferación Celular , Masculino , Regulación Neoplásica de la Expresión Génica , Femenino
7.
Biomarkers ; 29(5): 276-284, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38767408

RESUMEN

BACKGROUND: Bladder cancer (BC) is one of the ten most common cancers worldwide with late detection and early age of diagnosis. There is abundant evidence that early detection and timely intervention can lead to a better prognosis of BC. Substantial evidence has indicated that microRNAs (miRNAs) are specific to different tumour types and are remarkably stable, indicating that serum miRNAs may serve as potential cancer diagnostic markers. This study aimed to identify suitable serum miRNAs to create a panel that can be used to diagnose primary BC. METHODS: In this study, 18 miRNAs that were differentially expressed in BC were obtained from the PubMed or Gene Expression Omnibus database. Then, 18 BC-related-miRNAs were verified in screening and validation sets created using 56 (28 primary BC vs. 28 NCs) and 168 (84 primary BC vs. 84 NCs) serum samples, respectively. Quantitative reverse transcription-PCR (qRT-PCR) was performed to verify the identity of the differential miRNAs. A multi-miRNA panel with superior diagnostic performance was constructed. TCGA and KEGG databases were used to conduct the survival analysis and bioinformatics analysis, respectively. RESULTS: Six serum miRNAs (miR-221-5p, miR-181a-5p, miR-98-5p, miR-15a-5p, miR-222-3p, and miR-197-3p) were significantly aberrantly expressed in the BC patients, while four miRNAs from among them (miR-221-5p, miR-181a-5p, miR-15a-5p, miR-222-3p) were assembled into a panel that showed high diagnostic value (AUC = 0.875, 95% CI: 0.815 - 0.921; sensitivity: 82.14%; and specificity: 85.71%) based on the logistic regression analysis. The survival analysis showed that miR-181a-5p was closely associated with BC prognosis (Log-rank p-value < 0.05). CONCLUSION: The combination of the four miRNAs (miR-221-5p, miR-181a-5p, miR-15a-5p and miR-222-3p) may be a novel non-invasive serological biomarker for BC screening.


Early detection and timely intervention can lead to a better prognosis of bladder cancer.This study aimed to identify suitable serum miRNAs to create a panel that can be used to diagnose primary bladder cancer.


Asunto(s)
Biomarcadores de Tumor , MicroARNs , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/sangre , Neoplasias de la Vejiga Urinaria/diagnóstico , MicroARNs/sangre , MicroARNs/genética , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Femenino , Masculino , Persona de Mediana Edad , Pronóstico , Regulación Neoplásica de la Expresión Génica , Anciano , Perfilación de la Expresión Génica
8.
Arch Toxicol ; 98(9): 2907-2918, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38811393

RESUMEN

Assessing the association between candidate single-nucleotide polymorphisms (SNPs) identified by multi-omics approaches and susceptibility to silicosis. RNA-seq analysis was performed to screen the differentially expressed mRNAs in the fibrotic lung tissues of mice exposed to silica particles. Following this, we integrated the SNPs located in the above human homologenes with the silicosis-related genome-wide association study (GWAS) data to select the candidate SNPs. Then, expression quantitative trait locus (eQTL)-SNPs were identified by the GTEx database. Next, we validated the associations between the functional eQTL-SNPs and silicosis susceptibility by additional case-control study. And the contribution of the identified SNP and its host gene in the fibrosis process was further validated by functional experiments. A total of 12 eQTL-SNPs were identified in the screening stage. The results of the validation stage suggested that the variant T allele of rs419540 located in IL12RB1 significantly increased the risk of developing silicosis [additive model: odds ratio (OR) = 1.78, 95% confidence interval (CI) 1.11-2.85, P = 0.017]. Furthermore, the combination of GWAS and the results of validation stage also indicated that the variant T allele of rs419540 in IL12RB1 was associated with increased silicosis risk (additive model: OR = 2.07, 95% CI 1.38-3.12, P < 0.001). Additionally, after knockdown or overexpression of IL12RB1, the levels of pro-inflammatory factors, such as IL-12, IFN-γ, and other pro-inflammatory factors, were correspondingly decreased or increased. The novel eQTL-SNP, rs419540, might increase the risk of silicosis by modulating the expression levels of IL12RB1.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Silicosis , Silicosis/genética , Animales , Humanos , Estudios de Casos y Controles , Ratones , Masculino , Receptores de Interleucina-12/genética , Pulmón/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Femenino , Dióxido de Silicio/toxicidad , Multiómica
9.
Arch Toxicol ; 98(7): 2117-2129, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38538875

RESUMEN

To explore the association between apaQTL/eQTL-SNPs and the susceptibility to silicosis. A silicosis-related GWAS was initially conducted to screen for single nucleotide polymorphisms (SNPs) associated with the risk of silicosis. Candidate SNPs with apaQTL and eQTL functions were then obtained from the 3'aQTL-atlas and GTEx databases. Subsequently, additional case-control studies were performed to validate the relationship between the candidate apaQTL/eQTL-SNPs and the risk of silicosis. Finally, experiments were conducted to illustrate APA events occurring at different alleles of the identified apaQTL/eQTL-SNPs. The combined results of the GWAS and iMLDR validations indicate that the variant T allele of the rs2974341 located on SMIM19 (additive model: OR = 0.66, the 95% CI = 0.53-0.84, P = 0.001) and the variant T allele of the rs2390488 located on TMTC4 (additive model: OR = 0.72, 95% CI = 0.57-0.90, P = 0.005) were significantly associated with decreased risk of developing silicosis susceptibility. Furthermore, 3'RACE experiments verified the presence of two poly (A) sites (proximal and distal) in SMIM19, rs2974341 may remotely regulate the binding between miRNA-3646 and SMIM19 with its high LD locus rs2974353 to affect the expression level of SMIM19. The rs2974341 variant T allele may contribute to the generation of the shorter 3'UTR transcript of SMIM19 and affect the binding of miRNA-3646 to the target gene SMIM19. The apaQTL/eQTL-SNPs may provide new perspectives for evaluating the regulatory function of SNPs in the development of silicosis.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Silicosis , Humanos , Estudios de Casos y Controles , Silicosis/genética , Alelos , Enfermedades Profesionales/genética , Masculino , MicroARNs/genética
10.
Clin Neuropathol ; 43(4): 113-126, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39120072

RESUMEN

Glioma is the most common brain tumor, accounting for a large majority of cancer-related deaths. ß-galactoside α2, 6 sialyltranferase 1 (ST6Gal1), the primary enzyme responsible for the conjugation of α2, 6 sialic acids to protein and lipid targets, is strongly associated with the occurrence and development of several brain tumor types. Still, the expression, targets, and functions of ST6Gal1 in glioma patients remain undetermined. As sialylation of the Ig-like cell adhesion family molecules have prominent roles in the latter's regulation in other biological contexts, we screened for members that have potential to be regulated by ST6Gal1 in silico and examined co-expressed protein modules using data derived from the Cancer Genome Atlas (TCGA) database, and we identified neural cell adhesion molecule (NCAM1) as a major ST6Gal1-interacting target. Bioinformatic binding analysis confirmed the interaction of ST6Gal1 and NCAM1. Immunohistochemistry was then used to evaluate post-operative samples from 156 patients with gliomas. ST6Gal1 and NCAM1 were co-expressed in gliomas, and their expression correlated significantly (p = 0.002) by univariate analysis. Our study also found that the expression levels of both ST6Gal1 and NCAM1 corresponded negatively with glioma grade, isocitrate dehydrogenase (IDH) mutation, and proliferation index (Ki67). Consistently, Kaplan-Meier survival curves showed that lower ST6Gal1 and NCAM1 protein levels are linked to unfavorable outcomes in glioma patients (p = 0.018 and p < 0.001, respectively). Our data indicate that ST6Gal1 may participate in the inhibition of oncogenesis and malignant progression via interacting with and targeting NCAM1 in glioma, thus presenting a novel strategy for intervention.


Asunto(s)
Neoplasias Encefálicas , Glioma , Sialiltransferasas , Humanos , Glioma/patología , Glioma/genética , Glioma/metabolismo , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Masculino , Femenino , Adulto , Persona de Mediana Edad , Antígenos CD/metabolismo , Antígeno CD56/metabolismo , Anciano , Biomarcadores de Tumor/metabolismo , beta-D-Galactósido alfa 2-6-Sialiltransferasa
11.
Curr Microbiol ; 81(9): 296, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105989

RESUMEN

Duck enteritis virus (DEV) may lead to vascular injury, gastrointestinal mucosal erosion, lymphoid organ injury, and Polyinosinic-polycytidylic acid (Poly I:C) has an antiviral effect by inducing low levels of interferon. The purpose of this study was to explore the pathogenesis of DEV-induced intestinal injury in ducks and to verify the therapeutic effects of different concentrations of Poly I:C. In this study, duck enteritis model was established by infecting healthy Pekin ducks with DEV. Duck intestinal tissues were extracted from normal control group, model group, and treatment group with different doses of Poly I:C. In vivo, HE and TUNEL staining were used to observe the morphological changes and apoptosis. In vitro, the proliferation and apoptosis of duck intestinal epithelial cells were evaluated by MTT assay, TUNEL staining, and flow cytometry. The results showed that Poly I:C protected ducks from DEV toxicity by improving intestinal morphology and inhibiting apoptosis. In addition, the antiviral effect of Poly I:C on DEV was found in a dose-dependent manner, with a more relatively obvious effect at a high dose of Poly I:C. All in all, these results demonstrated that Poly I:C played a vital role in the apoptosis induced by DEV in ducks and modest dose of Poly I:C treatment worked well and may provide important reference for the development of new antiviral drugs in the future.


Asunto(s)
Apoptosis , Patos , Enteritis , Poli I-C , Animales , Patos/virología , Poli I-C/farmacología , Poli I-C/administración & dosificación , Apoptosis/efectos de los fármacos , Enteritis/virología , Enteritis/tratamiento farmacológico , Enteritis/veterinaria , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/tratamiento farmacológico , Intestinos/virología , Intestinos/patología , Antivirales/farmacología , Mardivirus/efectos de los fármacos , Mucosa Intestinal/virología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología
12.
Curr Microbiol ; 81(7): 218, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856763

RESUMEN

Atractylodes macrocephala Koidz (AMK) is a perennial herb from the plant family Asteraceae (formerly Compositae). This herb is mainly distributed in mountainous wetlands in Zhejiang, Sichuan, Yunnan, and Hunan provinces of China. Its medicinal production and quality, however, are severely impacted by root rot disease. In our previous study, endophytic bacterium designated AM201 exerted a high biocontrol effect on the root rot disease of AMK. However, the molecular mechanisms underlying this effect remain unclear. In this study, the identity of strain AM201 as Rhodococcus sp. was determined through analysis of its morphology, physiological and biochemical characteristics, as well as 16S rDNA sequencing. Subsequently, we performed transcriptome sequencing and bioinformatics analysis to compare and analyze the transcriptome profiles of root tissues from two groups: AM201 (AMK seedlings inoculated with Fusarium solani [FS] and AM201) and FS (AMK seedlings inoculated with FS alone). We also conducted morphological, physiological, biochemical, and molecular identification analyses for the AM201 strain. We obtained 1,560 differentially expressed genes, including 187 upregulated genes and 1,373 downregulated genes. We screened six key genes (GOLS2, CIPK25, ABI2, egID, PG1, and pgxB) involved in the resistance of AM201 against AMK root rot disease. These genes play a critical role in reactive oxygen species (ROS) clearance, Ca2+ signal transduction, abscisic acid signal inhibition, plant root growth, and plant cell wall defense. The strain AM201 was identified as Rhodococcus sp. based on its morphological characteristics, physiological and biochemical properties, and 16S rDNA sequencing results. The findings of this study could enable to prevent and control root rot disease in AMK and could offer theoretical guidance for the agricultural production of other medicinal herbs.


Asunto(s)
Atractylodes , Endófitos , Perfilación de la Expresión Génica , Enfermedades de las Plantas , Raíces de Plantas , Rhodococcus , Rhodococcus/genética , Rhodococcus/metabolismo , Rhodococcus/fisiología , Atractylodes/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Raíces de Plantas/microbiología , Endófitos/genética , Endófitos/metabolismo , Endófitos/clasificación , Endófitos/fisiología , Endófitos/aislamiento & purificación , Transcriptoma , Fusarium/genética , Fusarium/fisiología , China , ARN Ribosómico 16S/genética
13.
Nano Lett ; 23(6): 2239-2246, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36857481

RESUMEN

Halogen wastewater greatly threatens the health of human beings and aquatic organisms due to its severe toxicity, corrosiveness, and volatility. Efficient bromine removal is therefore urgently required, while existing Br2-capture materials often face challenges from limited water stability and possible halogen leaking. We report a facile and efficient aqueous Br2 removal method using submicron resorcinol-formaldehyde (RF) resin nanoparticles (NPs). The abundant aromatic groups dominate the Br2 removal by substitution reactions. An excellent Br2 conversion capacity of 7441 mg gRF-1 was achieved by RF NPs that outperform state-of-the-art materials by ∼2-fold, along with advantages including good water stability, low cost, and easy fabrication. Two recycling-coupled (electrochemical or H2O2-involved) Br2 removal routes further reveal the feasibility of in-depth halogen removal by RF NPs. The brominated resin can be downstream upcycled for silver recovery, realizing the harvesting of precious metal, reducing of heavy-metal pollution, and resource utilization of brominated resin.

14.
Nano Lett ; 23(23): 10930-10938, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37982539

RESUMEN

Aqueous zinc-ion batteries have attracted a continually increasing level of interest for large-scale energy storage because they are highly safe and have high energy density and abundant reserves. However, Zn anodes face significant challenges such as severe dendrite growth and hydrogen evolution reaction (HER). We here propose an efficient Zn2+ sieve strategy for modulating the anode chemistry using two-dimensional NH2-MIL-125 (Ti) metal-organic framework (MOF) nanosheets. Theoretical investigations reveal the crucial role of the Ti MOF in regulating Zn2+ solvation structures for fast diffusion and uniform deposition and decreasing HER reactivity. The structure of the nanosheets enables abundant accessible desolvation sites and shortened ionic pathways. As a result, the MOF nanosheet-protected Zn anode exhibited greatly improved cycling stability in both symmetric cells and full cells. Operando optical monitoring and postmortem analysis revealed effective suppression of dendrite growth and HER by Ti MOF nanosheets. This anti-HER MOF-enabled Zn2+ sieve strategy provides a viable Zn anode and provides new insights for optimizing aqueous batteries.

15.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125654

RESUMEN

Ubiquitin modification and alternative polyadenylation play crucial roles in the onset and progression of cancer. Hence, this study aims to comprehensively and deeply understand gene regulation and associated biological processes in lung adenocarcinoma (LUAD) by integrating both mechanisms. Alternative polyadenylation (APA)-related E3 ubiquitin ligases in LUAD were identified through multiple databases, and the association between selected genetic loci influencing gene expression (apaQTL-SNPs) and LUAD risk were evaluated through the GWAS database of the Female Lung Cancer Consortium in Asia (FLCCA). Subsequently, the interaction between RNF213 and ZBTB20, as well as their functional mechanisms in LUAD, were investigated using bioinformatics analysis, Western blot, co-immunoprecipitation, and colony formation experiments. A total of five apaQTL-SNPs (rs41301932, rs4494603, rs9890400, rs56066320, and rs41301932), located on RNF213, were significantly associated with LUAD risk (p < 0.05), and they inhibit tumor growth through ubiquitin-mediated degradation of ZBTB20.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Poliadenilación , Polimorfismo de Nucleótido Simple , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Poliadenilación/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Femenino , Ubiquitina/metabolismo , Ubiquitina/genética , Estudio de Asociación del Genoma Completo , Línea Celular Tumoral , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
J Environ Manage ; 353: 120257, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38330843

RESUMEN

The typical lake wetlands in the middle and lower reaches of the Yangtze River are important wintering sites of cranes in China. The spatiotemporal evolution of crane populations and their habitats has great value in clarifying the pivotal role of regional lake wetlands in biodiversity conservation. Therefore, 2562 data points of four crane species were selected in this study. The data reflected the distributional position of the cranes over the period 2000-2020. Twelve surrounding environmental factors were selected to investigate the spatiotemporal evolution in the study area by using the MaxEnt model. The Jackknife method was used to identify the main environmental factors affecting the choice of crane habitats. The results indicated that: (1) Developed land in the study area increased by 42,795.81 hm2. The crane populations were mainly distributed in the farmland and mudflat, and their number decreased yearly. (2) From 2000 to 2020, the area of suitable crane habitat experienced an overall decrease. Specifically, the mid-suitable area dwindled by 6234.23 hm2, marking a substantial reduction of 52.05 %. Similarly, the most suitable area saw a decline of 786.41 hm2, representing a noteworthy decrease of 71.09 %. (3) The findings from the analysis of influencing factors revealed a dynamic pattern over the years. Habitat type, water density, and distance to water were the main influencing factors in the study area from 2000 to 2020. This study provides a new perspective on the conservation and structural habitat restoration of crane populations in the middle and lower reaches of the Yangtze River.


Asunto(s)
Lagos , Humedales , Animales , Ecosistema , Biodiversidad , Aves , China , Agua
17.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2965-2972, 2024 Jun.
Artículo en Zh | MEDLINE | ID: mdl-39041156

RESUMEN

This study developed a UPLC-PDA wavelength switching method to simultaneously determine the content of maltol and seventeen saponins in red and black ginseng and compared the quality differences of two different processed products of red and black ginseng. A Waters HSS T3 column(2. 1 mm×100 mm, 1. 8 µm) at 30 ℃ was adopted, with the mobile phase of acetonitrile(A) and water containing 0. 1% phosphoric acid(B) under gradient elution, the flow rate of 0. 3 m L·min~(-1), and the injection volume of 2 µL.The wavelength switching was set at 273 nm within 0-11 min and 203 nm within 11-60 min. The content results of multiple batches of red and black ginseng samples were analyzed by the hierarchical cluster analysis(HCA) and principal component analysis(PCA) to evaluate the quality difference. The results showed that the 18 constituents exhibited good linear relationships within certain concentration ranges, with the correlation coefficients(r) greater than 0. 999 1. The relative standard deviations(RSDs) of precision,repeatability, and stability were all less than 5. 0%. The average recoveries ranged from 95. 93% to 104. 2%, with an RSD of 1. 8%-4. 2%. The content determination results showed that the quality of red and black ginseng samples was different, and the two types of processed products were intuitively distinguished by HCA and PCA. The method is accurate, reliable, and reproducible. It can be used to determine the content of maltol and seventeen saponins in red and black ginseng and provide basic information for the quality evaluation and comprehensive utilization of red and black ginseng.


Asunto(s)
Panax , Pironas , Saponinas , Panax/química , Saponinas/análisis , Saponinas/química , Cromatografía Líquida de Alta Presión/métodos , Pironas/análisis , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis
18.
Lab Invest ; 103(12): 100266, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37871834

RESUMEN

Sepsis-induced acute respiratory distress syndrome (ARDS) is a devastating clinically severe respiratory disorder, and no effective therapy is available. Melatonin (MEL), an endogenous neurohormone, has shown great promise in alleviating sepsis-induced ARDS, but the underlying molecular mechanism remains unclear. Using a lipopolysaccharide (LPS)-treated mouse alveolar macrophage cell line (MH-S) model, we found that MEL significantly inhibited NOD-like receptor protein 3 (NLRP3) inflammasome activation in LPS-treated macrophages, whereas this inhibitory effect of MEL was weakened in MH-S cells transfected with glucose transporter 1 (GLUT1) overexpressing lentivirus. Further experiments showed that MEL downregulated GLUT1 via inhibition of hypoxia-inducible factor 1 (HIF-1α). Notably, hydrogen peroxide (H2O2), a donor of reactive oxygen species (ROS), significantly increased the level of intracellular ROS and inhibited the regulatory effect of MEL on the HIF-1α/GLUT1 pathway. Interestingly, the protective effect of MEL was attenuated after the knockdown of melatonin receptor 1A (MT1) in MH-S cells. We also confirmed in vivo that MEL effectively downregulated the HIF-1α/GLUT1/NLRP3 pathway in the lung tissue of LPS-treated mice, as well as significantly ameliorated LPS-induced lung injury and improved survival in mice. Collectively, these findings revealed that MEL regulates the activation of the ROS/HIF-1α/GLUT1/NLRP3 pathway in alveolar macrophages via the MT1 receptor, further alleviating sepsis-induced ARDS.


Asunto(s)
Melatonina , Síndrome de Dificultad Respiratoria , Sepsis , Ratones , Animales , Inflamasomas/metabolismo , Macrófagos Alveolares/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Melatonina/farmacología , Melatonina/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Proteínas NLR/metabolismo , Lipopolisacáridos/farmacología , Transportador de Glucosa de Tipo 1 , Peróxido de Hidrógeno/metabolismo , Síndrome de Dificultad Respiratoria/tratamiento farmacológico
19.
Biochem Biophys Res Commun ; 689: 149222, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37979330

RESUMEN

Hyperuricemia is a clinical disease characterized by a continuous increase in uric acid (UA) due to purine metabolism disorder. As current drug treatments are limited, it is imperative to explore new drugs that offer better safety and efficacy. In this study, Nephila clavata toxin gland homogenates were isolated and purified by exclusion chromatography and high-performance liquid chromatography, resulting in the identification and isolation of a short peptide (NCTX15) with the sequence 'QSGHTFK'. Analysis showed that NCTX15 exhibited no cytotoxicity in mouse macrophages or toxic and hemolytic activity in mice. Notably, NCTX15 inhibited UA production by down-regulating urate transporter 1 and glucose transporter 9 and up-regulating organic anion transporter 1, thus promoting UA excretion. In addition, NCTX15 alleviated the inflammatory response and renal injury by inhibiting the expression of inflammatory factors interleukin-6, interleukin-1ß, tumor necrosis factor alpha, NLR family, pyrin domain-containing 3, and pyroptosis-related factor gasdermin D. These results indicate that NCTX15 displayed urate-lowering, anti-inflammatory, and analgesic effects. As the first urate-reducing short peptide isolated from a spider toxin gland homogenate, NCTX15 exhibits considerable potential as a novel drug molecule for anti-gout and hyperuricemia treatment.


Asunto(s)
Gota , Hiperuricemia , Ratones , Animales , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Ácido Úrico/metabolismo , Gota/metabolismo , Riñón/metabolismo , Interleucina-6/metabolismo , Xantina Oxidasa/metabolismo
20.
Biostatistics ; 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36583955

RESUMEN

Speech and language play an important role in human vocal communication. Studies have shown that vocal disorders can result from genetic factors. In the absence of high-quality data on humans, mouse vocalization experiments in laboratory settings have been proven useful in providing valuable insights into mammalian vocal development, including especially the impact of certain genetic mutations. Such data sets usually consist of categorical syllable sequences along with continuous intersyllable interval (ISI) times for mice of different genotypes vocalizing under different contexts. ISIs are of particular importance as increased ISIs can be an indication of possible vocal impairment. Statistical methods for properly analyzing ISIs along with the transition probabilities have however been lacking. In this article, we propose a class of novel Markov renewal mixed models that capture the stochastic dynamics of both state transitions and ISI lengths. Specifically, we model the transition dynamics and the ISIs using Dirichlet and gamma mixtures, respectively, allowing the mixture probabilities in both cases to vary flexibly with fixed covariate effects as well as random individual-specific effects. We apply our model to analyze the impact of a mutation in the Foxp2 gene on mouse vocal behavior. We find that genotypes and social contexts significantly affect the length of ISIs but, compared to previous analyses, the influences of genotype and social context on the syllable transition dynamics are weaker.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA