Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Expert Rev Proteomics ; 18(10): 845-861, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34607525

RESUMEN

INTRODUCTION: Laser Capture Microdissection (LCM) uses a laser to isolate, or capture, specific cells of interest in a complex heterogeneous tissue section, under direct microscopic visualization. Recently, there has been a surge of publications using LCM for tissue spatial molecular profiling relevant to a wide range of research topics. AREAS COVERED: We summarize the many advances in tissue Laser Capture Proteomics (LCP) using mass spectrometry for discovery, and protein arrays for signal pathway network mapping. This review emphasizes: a) transition of LCM phosphoproteomics from the lab to the clinic for individualized cancer therapy, and b) the emerging frontier of LCM single cell molecular analysis combining proteomics with genomic, and transcriptomic analysis. The search strategy was based on the combination of MeSH terms with expert refinement. EXPERT OPINION: LCM is complemented by a rich set of instruments, methodology protocols, and analytical A.I. (artificial intelligence) software for basic and translational research. Resolution is advancing to the tissue single cell level. A vision for the future evolution of LCM is presented. Emerging LCM technology is combining digital and AI guided remote imaging with automation, and telepathology, to a achieve multi-omic profiling that was not previously possible.


Asunto(s)
Medicina de Precisión , Proteómica , Inteligencia Artificial , Captura por Microdisección con Láser , Rayos Láser
2.
Am J Pathol ; 189(9): 1846-1862, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31199921

RESUMEN

The mammalian target of rapamycin (mTOR) and associated phosphatidylinositol 3-kinase/AKT/mTOR signaling pathway is commonly up-regulated in cancer, including bladder cancer. mTOR complex 2 (mTORC2) is a major regulator of bladder cancer cell migration and invasion, but the mechanisms by which mTORC2 regulates these processes are unclear. A discovery mass spectrometry and reverse-phase protein array-based proteomics dual approach was used to identify novel mTORC2 phosphoprotein targets in actively invading cancer cells. mTORC2 targets included focal adhesion kinase, proto-oncogene tyrosine-protein kinase Src, and caveolin-1 (Cav-1), among others. Functional testing shows that mTORC2 regulates Cav-1 localization and dynamic phosphorylation of Cav-1 on Y14. Regulation of Cav-1 activity by mTORC2 also alters the abundance of caveolae, which are specialized lipid raft invaginations of the plasma membrane associated with cell signaling and membrane compartmentalization. Our results demonstrate a unique role for mTORC2-mediated regulation of caveolae formation in actively migrating cancer cells.


Asunto(s)
Caveolas/patología , Caveolina 1/metabolismo , Movimiento Celular , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Adulto , Anciano , Anciano de 80 o más Años , Caveolas/metabolismo , Caveolina 1/antagonistas & inhibidores , Caveolina 1/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Persona de Mediana Edad , Fosforilación , Pronóstico , Proto-Oncogenes Mas , ARN Interferente Pequeño/genética , Tasa de Supervivencia , Serina-Treonina Quinasas TOR/genética , Células Tumorales Cultivadas , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo
3.
Cancer Treat Res ; 178: 171-187, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31209845

RESUMEN

Genomic analysis of tumor specimens has revealed that cancer is fundamentally a proteomic disease at the functional level: driven by genomically defined derangements, but selected for in the proteins that are encoded and the aberrant activation of signaling and biochemical networks. This activation is measured by posttranslational modifications such as phosphorylation and other modifications that modulate cellular signaling, and these events cannot be effectively measured by genomic analysis alone. Moreover, these signaling networks by and large represent the targets for many FDA-approved and experimental molecularly targeted therapeutics. Consequently, it is important that we consider new classification schemas for oncology based not on tumor site of origin or histology under the microscope but on the functional protein signaling architecture. There are numerous proteomic technologies that could be discussed from a purely technological standpoint, but this chapter will concentrate on an overview of the main proteomic technologies available for conducting protein pathway activation analysis of clinical specimens such as multiplex immunoassays, phospho-specific flow cytometry, reverse phase protein microarrays, quantitative immunohistochemistry, and mass spectrometry. This chapter will focus on the application of these technologies to cancer-based clinical studies evaluating prognostic/predictive markers or for stratifying patients to personalized treatments.


Asunto(s)
Neoplasias , Medicina de Precisión , Proteómica , Humanos , Neoplasias/genética , Neoplasias/terapia , Análisis por Matrices de Proteínas , Transducción de Señal
4.
Adv Exp Med Biol ; 1188: 1-19, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31820380

RESUMEN

RPPA technology has graduated from a research tool to an essential component of clinical drug discovery research and personalized medicine. Next generations of RPPA technology will be a single clinical instrument that integrates all the steps of the workflow.


Asunto(s)
Medicina de Precisión , Análisis por Matrices de Proteínas , Proteómica , Medicina de Precisión/instrumentación , Medicina de Precisión/tendencias , Análisis por Matrices de Proteínas/normas , Análisis por Matrices de Proteínas/tendencias , Investigación/instrumentación , Investigación/tendencias
5.
Mol Cancer Res ; 18(9): 1392-1401, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32467173

RESUMEN

EGFR inhibitors have shown poor efficacy in head and neck squamous cell carcinoma (HNSCC) with demonstrated involvement of the insulin-like growth factor-1 receptor (IGF1R) in resistance to EGFR inhibition. IGF1R activates the PI3K-Akt pathway, which phosphorylates proline-rich Akt substrate of 40 kDa (PRAS40) to cease mTOR inhibition resulting in increased mTOR signaling. Proliferation assays separated six HNSCC cell lines into two groups: sensitive to EGFR inhibition or resistant; all sensitive cell lines demonstrated reduced sensitivity to EGFR inhibition upon IGF1R activation. Reverse phase protein microarray analysis and immunoblot identified a correlation between increased PRAS40 phosphorylation and IGFR-mediated resistance to EGFR inhibition. In sensitive cell lines, PRAS40 phosphorylation decreased 44%-80% with EGFR inhibition and was restored to 98%-196% of control by IGF1R activation, while phosphorylation was unaffected in resistant cell lines. Possible involvement of mTOR in this resistance mechanism was demonstrated through a similar pattern of p70S6K phosphorylation. However, addition of temsirolimus, an mTORC1 inhibitor, was insufficient to overcome IGF1R-mediated resistance and suggested an alternative mechanism. Forkhead box O3a (FOXO3a), which has been reported to complex with PRAS40 in the cytoplasm, demonstrated a 6-fold increase in nuclear to cytoplasmic ratio upon EGFR inhibition that was eliminated with concurrent IGF1R activation. Transcription of FOXO3a-regulated TRAIL and PTEN-induced putative kinase-1 (PINK1) was increased with EGFR inhibition in sensitive cell lines; this effect was diminished with IGF1R stimulation. IMPLICATIONS: These data suggest PRAS40 may play an important role in IGF1R-based therapeutic resistance to EGFR inhibition, and this likely occurs via inhibition of FOXO3a-mediated proapoptotic gene transcription.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Receptor IGF Tipo 1/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , Receptores ErbB/antagonistas & inhibidores , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/patología , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosforilación , Transducción de Señal , Sirolimus/análogos & derivados , Sirolimus/farmacología , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA