Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
EMBO J ; 35(4): 402-13, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26783364

RESUMEN

The Bcl-2 family proteins Bax and Bak are essential for the execution of many apoptotic programs. During apoptosis, Bax translocates to the mitochondria and mediates the permeabilization of the outer membrane, thereby facilitating the release of pro-apoptotic proteins. Yet the mechanistic details of the Bax-induced membrane permeabilization have so far remained elusive. Here, we demonstrate that activated Bax molecules, besides forming large and compact clusters, also assemble, potentially with other proteins including Bak, into ring-like structures in the mitochondrial outer membrane. STED nanoscopy indicates that the area enclosed by a Bax ring is devoid of mitochondrial outer membrane proteins such as Tom20, Tom22, and Sam50. This strongly supports the view that the Bax rings surround an opening required for mitochondrial outer membrane permeabilization (MOMP). Even though these Bax assemblies may be necessary for MOMP, we demonstrate that at least in Drp1 knockdown cells, these assemblies are not sufficient for full cytochrome c release. Together, our super-resolution data provide direct evidence in support of large Bax-delineated pores in the mitochondrial outer membrane as being crucial for Bax-mediated MOMP in cells.


Asunto(s)
Apoptosis , Mitocondrias/enzimología , Membranas Mitocondriales/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Multimerización de Proteína , Proteína X Asociada a bcl-2/metabolismo , Línea Celular , Citocromos c/metabolismo , Humanos , Microscopía Fluorescente , Mitocondrias/fisiología , Membranas Mitocondriales/fisiología , Permeabilidad
2.
Proc Natl Acad Sci U S A ; 112(36): 11288-93, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26305956

RESUMEN

Mammalian mitochondrial DNA (mtDNA) is packaged by mitochondrial transcription factor A (TFAM) into mitochondrial nucleoids that are of key importance in controlling the transmission and expression of mtDNA. Nucleoid ultrastructure is poorly defined, and therefore we used a combination of biochemistry, superresolution microscopy, and electron microscopy to show that mitochondrial nucleoids have an irregular ellipsoidal shape and typically contain a single copy of mtDNA. Rotary shadowing electron microscopy revealed that nucleoid formation in vitro is a multistep process initiated by TFAM aggregation and cross-strand binding. Superresolution microscopy of cultivated cells showed that increased mtDNA copy number increases nucleoid numbers without altering their sizes. Electron cryo-tomography visualized nucleoids at high resolution in isolated mammalian mitochondria and confirmed the sizes observed by superresolution microscopy of cell lines. We conclude that the fundamental organizational unit of the mitochondrial nucleoid is a single copy of mtDNA compacted by TFAM, and we suggest a packaging mechanism.


Asunto(s)
ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Mitocondrias/metabolismo , Nucleoproteínas/metabolismo , Animales , Células Cultivadas , Microscopía por Crioelectrón , ADN Mitocondrial/genética , ADN Mitocondrial/ultraestructura , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/ultraestructura , Tomografía con Microscopio Electrónico , Genoma Mitocondrial/genética , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/ultraestructura , Ratones , Microscopía Confocal , Mitocondrias/genética , Mitocondrias/ultraestructura , Mutación , Nucleoproteínas/genética , Nucleoproteínas/ultraestructura , Unión Proteica
4.
Proc Natl Acad Sci U S A ; 110(22): 8936-41, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23676277

RESUMEN

The mitochondrial inner membrane organizing system (MINOS) is a conserved large hetero-oligomeric protein complex in the mitochondrial inner membrane, crucial for the maintenance of cristae morphology. MINOS has been suggested to represent the core of an extended protein network that controls mitochondrial function and structure, and has been linked to several human diseases. The spatial arrangement of MINOS within mitochondria is ill-defined, however. Using super-resolution stimulated emission depletion (STED) microscopy and immunogold electron microscopy, we determined the distribution of three known human MINOS subunits (mitofilin, MINOS1, and CHCHD3) in mammalian cells. Super-resolution microscopy revealed that all three subunits form similar clusters within mitochondria, and that MINOS is more abundant in mitochondria around the nucleus than in peripheral mitochondria. At the submitochondrial level, mitofilin, a core MINOS subunit, is preferentially localized at cristae junctions. In primary human fibroblasts, mitofilin labeling uncovered a regularly spaced pattern of clusters arranged in parallel to the cell growth surfaces. We suggest that this array of MINOS complexes might explain the observed phenomenon of largely horizontally arranged cristae junctions that connect the inner boundary membrane to lamellar cristae. The super-resolution images demonstrate an unexpectedly high level of regularity in the nanoscale distribution of the MINOS complex in human mitochondria, supporting an integrating role of MINOS in the structural organization of the organelle.


Asunto(s)
Microscopía Fluorescente/métodos , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Musculares/metabolismo , Animales , Chlorocebus aethiops , Fibroblastos , Células HeLa , Humanos , Microscopía Electrónica , Microscopía Inmunoelectrónica , Membranas Mitocondriales/ultraestructura , Nanotecnología , Saccharomyces cerevisiae , Células Vero
5.
Chemistry ; 21(38): 13344-56, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26272226

RESUMEN

Far-red emitting fluorescent dyes for optical microscopy, stimulated emission depletion (STED), and ground-state depletion (GSDIM) super-resolution microscopy are presented. Fluorinated silicon-rhodamines (SiRF dyes) and phosphorylated oxazines have absorption and emission maxima at about λ≈660 and 680 nm, respectively, possess high photostability, and large fluorescence quantum yields in water. A high-yielding synthetic path to introduce three aromatic fluorine atoms and unconventional conjugation/solubilization spacers into the scaffold of a silicon-rhodamine is described. The bathochromic shift in SiRF dyes is achieved without additional fused rings or double bonds. As a result, the molecular size and molecular mass stay quite small (<600 Da). The use of the λ=800 nm STED beam instead of the commonly used one at λ=750-775 nm provides excellent imaging performance and suppresses re-excitation of SiRF and the oxazine dyes. The photophysical properties and immunofluorescence imaging performance of these new far-red emitting dyes (photobleaching, optical resolution, and switch-off behavior) are discussed in detail and compared with those of some well-established fluorophores with similar spectral properties.

6.
Nat Methods ; 8(4): 353-9, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21399636

RESUMEN

We demonstrate three-dimensional (3D) super-resolution imaging of stochastically switched fluorophores distributed across whole cells. By evaluating the higher moments of the diffraction spot provided by a 4Pi detection scheme, single markers can be simultaneously localized with <10 nm precision in three dimensions in a layer of 650 nm thickness at an arbitrarily selected depth in the sample. By splitting the fluorescence light into orthogonal polarization states, our 4Pi setup also facilitates the 3D nanoscopy of multiple fluorophores. Offering a combination of multicolor recording, nanoscale resolution and extended axial depth, our method substantially advances the noninvasive 3D imaging of cells and of other transparent materials.


Asunto(s)
Colorantes Fluorescentes , Microscopía Fluorescente/métodos , Animales , Plaquetas/metabolismo , Células COS , Chlorocebus aethiops , Color , Humanos , Imagenología Tridimensional , Microtúbulos/ultraestructura , Nanotecnología/métodos , Receptores Fibrinógenos/análisis , Procesos Estocásticos , Tubulina (Proteína)/análisis , Células Vero
7.
Chemistry ; 20(1): 146-57, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24338798

RESUMEN

The synthesis, reactivity, and photophysical properties of new rhodamines with intense red fluorescence, two polar residues (hydroxyls, primary phosphates, or sulfonic acid groups), and improved hydrolytic stability of the amino-reactive sites (NHS esters or mixed N-succinimidyl carbonates) are reported. All fluorophores contain an N-alkyl-1,2-dihydro-2,2,4-trimethylquinoline fragment, and most of them bear a fully substituted tetrafluoro phenyl ring with a secondary carboxamide group. The absorption and emission maxima in water are in the range of 635-639 and 655-659 nm, respectively. A vastly simplified approach to red-emitting rhodamines with two phosphate groups that are compatible with diverse functional linkers was developed. As an example, a phosphorylated dye with an azide residue was prepared and was used in a click reaction with a strained alkyne bearing an N-hydroxysuccinimid (NHS) ester group. This method bypasses the undesired activation of phosphate groups, and gives an amphiphilic amino-reactive dye, the solubility and distribution of which between aqueous and organic phases can be controlled by varying the pH. The presence of two hydroxyl groups and a phenyl ring with two carboxyl residues in the dyes with another substitution pattern is sufficient for providing the hydrophilic properties. Selective formation of a mono-N-hydroxysuccinimidyl ester from 5-carboxy isomer of this rhodamine is reported. The fluorescence quantum yields varied from 58 to 92% for free fluorophores, and amounted to 18-64% for antibody conjugates in aqueous buffers. The brightness and photostability of these fluorophores facilitated two-color stimulated emission depletion (STED) fluorescence nanoscopy of biological samples with high contrast and minimal background. Selecting a pair of fluorophores with absorption/emission bands at 579/609 and 635/655 nm enabled two-color channels with low cross-talk and negligible background at approximately 40 nm resolution.


Asunto(s)
Colorantes Fluorescentes/química , Rodaminas/química , Azidas/química , Química Clic , Colorantes Fluorescentes/síntesis química , Concentración de Iones de Hidrógeno , Fosforilación , Quinolinas , Rodaminas/síntesis química , Espectrometría de Fluorescencia , Agua/química
8.
Chemistry ; 20(41): 13162-73, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25196166

RESUMEN

Caged rhodamine dyes (Rhodamines NN) of five basic colors were synthesized and used as "hidden" markers in subdiffractional and conventional light microscopy. These masked fluorophores with a 2-diazo-1-indanone group can be irreversibly photoactivated, either by irradiation with UV- or violet light (one-photon process), or by exposure to intense red light (λ∼750 nm; two-photon mode). All dyes possess a very small 2-diazoketone caging group incorporated into the 2-diazo-1-indanone residue with a quaternary carbon atom (C-3) and a spiro-9H-xanthene fragment. Initially they are non-colored (pale yellow), non-fluorescent, and absorb at λ=330-350 nm (molar extinction coefficient (ε)≈10(4) M(-1) cm(-1)) with a band edge that extends to about λ=440 nm. The absorption and emission bands of the uncaged derivatives are tunable over a wide range (λ=511-633 and 525-653 nm, respectively). The unmasked dyes are highly colored and fluorescent (ε=3-8×10(4) M(-1) cm(-1) and fluorescence quantum yields (ϕ)=40-85% in the unbound state and in methanol). By stepwise and orthogonal protection of carboxylic and sulfonic acid groups a highly water-soluble caged red-emitting dye with two sulfonic acid residues was prepared. Rhodamines NN were decorated with amino-reactive N-hydroxysuccinimidyl ester groups, applied in aqueous buffers, easily conjugated with proteins, and readily photoactivated (uncaged) with λ=375-420 nm light or intense red light (λ=775 nm). Protein conjugates with optimal degrees of labeling (3-6) were prepared and uncaged with λ=405 nm light in aqueous buffer solutions (ϕ=20-38%). The photochemical cleavage of the masking group generates only molecular nitrogen. Some 10-40% of the non-fluorescent (dark) byproducts are also formed. However, they have low absorbance and do not quench the fluorescence of the uncaged dyes. Photoactivation of the individual molecules of Rhodamines NN (e.g., due to reversible or irreversible transition to a "dark" non-emitting state or photobleaching) provides multicolor images with subdiffractional optical resolution. The applicability of these novel caged fluorophores in super-resolution optical microscopy is exemplified.


Asunto(s)
Compuestos Aza/química , Colorantes Fluorescentes/síntesis química , Indanos/química , Rodaminas/química , Animales , Chlorocebus aethiops , Citoesqueleto/química , Colorantes Fluorescentes/química , Microscopía Fluorescente , Fotólisis , Proteínas/química , Proteínas/metabolismo , Rodaminas/síntesis química , Espectrometría de Fluorescencia , Ácidos Sulfónicos/química , Rayos Ultravioleta , Células Vero
9.
Proc Natl Acad Sci U S A ; 108(33): 13534-9, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21808029

RESUMEN

Mammalian mtDNA is packaged in DNA-protein complexes denoted mitochondrial nucleoids. The organization of the nucleoid is a very fundamental question in mitochondrial biology and will determine tissue segregation and transmission of mtDNA. We have used a combination of stimulated emission depletion microscopy, enabling a resolution well below the diffraction barrier, and molecular biology to study nucleoids in a panel of mammalian tissue culture cells. We report that the nucleoids labeled with antibodies against DNA, mitochondrial transcription factor A (TFAM), or incorporated BrdU, have a defined, uniform mean size of ∼100 nm in mammals. Interestingly, the nucleoid frequently contains only a single copy of mtDNA (average ∼1.4 mtDNA molecules per nucleoid). Furthermore, we show by molecular modeling and volume calculations that TFAM is a main constituent of the nucleoid, besides mtDNA. These fundamental insights into the organization of mtDNA have broad implications for understanding mitochondrial dysfunction in disease and aging.


Asunto(s)
ADN Mitocondrial/ultraestructura , Microscopía/instrumentación , Animales , Anticuerpos , ADN Mitocondrial/inmunología , Proteínas de Unión al ADN/inmunología , Humanos , Mitocondrias , Proteínas Mitocondriales/inmunología , Factores de Transcripción/inmunología
10.
Proc Natl Acad Sci U S A ; 108(33): 13546-51, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21799113

RESUMEN

The translocase of the mitochondrial outer membrane (TOM) complex is the main import pore for nuclear-encoded proteins into mitochondria, yet little is known about its spatial distribution within the outer membrane. Super-resolution stimulated emission depletion microscopy was used to determine quantitatively the nanoscale distribution of Tom20, a subunit of the TOM complex, in more than 1,000 cells. We demonstrate that Tom20 is located in clusters whose nanoscale distribution is finely adjusted to the cellular growth conditions as well as to the specific position of a cell within a microcolony. The density of the clusters correlates to the mitochondrial membrane potential. The distributions of clusters of Tom20 and of Tom22 follow an inner-cellular gradient from the perinuclear to the peripheral mitochondria. We conclude that the nanoscale distribution of the TOM complex is finely adjusted to the cellular conditions, resulting in distribution gradients both within single cells and between adjacent cells.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/análisis , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Línea Celular , Fenómenos Fisiológicos Celulares , Proteínas de Transporte de Membrana , Proteínas de Transporte de Membrana Mitocondrial/análisis , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Ratas , Receptores de Superficie Celular , Receptores Citoplasmáticos y Nucleares/análisis , Tubulina (Proteína)/análisis , Tubulina (Proteína)/metabolismo
11.
Cells ; 13(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38667298

RESUMEN

STED nanoscopy allows for the direct observation of dynamic processes in living cells and tissues with diffraction-unlimited resolution. Although fluorescent proteins can be used for STED imaging, these labels are often outperformed in photostability by organic fluorescent dyes. This feature is especially crucial for time-lapse imaging. Unlike fluorescent proteins, organic fluorophores cannot be genetically fused to a target protein but require different labeling strategies. To achieve simultaneous imaging of more than one protein in the interior of the cell with organic fluorophores, bioorthogonal labeling techniques and cell-permeable dyes are needed. In addition, the fluorophores should preferentially emit in the red spectral range to reduce the potential phototoxic effects that can be induced by the STED light, which further restricts the choice of suitable markers. In this work, we selected five different cell-permeable organic dyes that fulfill all of the above requirements and applied them for SPIEDAC click labeling inside living cells. By combining click-chemistry-based protein labeling with other orthogonal and highly specific labeling methods, we demonstrate two-color STED imaging of different target structures in living specimens using different dye pairs. The excellent photostability of the dyes enables STED imaging for up to 60 frames, allowing the observation of dynamic processes in living cells over extended time periods at super-resolution.


Asunto(s)
Química Clic , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Humanos , Química Clic/métodos , Células HeLa , Microscopía Fluorescente/métodos , Color , Nanotecnología/métodos , Biomarcadores/metabolismo , Coloración y Etiquetado/métodos
12.
Cell Discov ; 10(1): 62, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862506

RESUMEN

Membrane budding, which underlies fundamental processes like endocytosis, intracellular trafficking, and viral infection, is thought to involve membrane coat-forming proteins, including the most observed clathrin, to form Ω-shape profiles and helix-forming proteins like dynamin to constrict Ω-profiles' pores and thus mediate fission. Challenging this fundamental concept, we report that polymerized clathrin is required for Ω-profiles' pore closure and that clathrin around Ω-profiles' base/pore region mediates pore constriction/closure in neuroendocrine chromaffin cells. Mathematical modeling suggests that clathrin polymerization at Ω-profiles' base/pore region generates forces from its intrinsically curved shape to constrict/close the pore. This new fission function may exert broader impacts than clathrin's well-known coat-forming function during clathrin (coat)-dependent endocytosis, because it underlies not only clathrin (coat)-dependent endocytosis, but also diverse endocytic modes, including ultrafast, fast, slow, bulk, and overshoot endocytosis previously considered clathrin (coat)-independent in chromaffin cells. It mediates kiss-and-run fusion (fusion pore closure) previously considered bona fide clathrin-independent, and limits the vesicular content release rate. Furthermore, analogous to results in chromaffin cells, we found that clathrin is essential for fast and slow endocytosis at hippocampal synapses where clathrin was previously considered dispensable, suggesting clathrin in mediating synaptic vesicle endocytosis and fission. These results suggest that clathrin and likely other intrinsically curved coat proteins are a new class of fission proteins underlying vesicle budding and fusion. The half-a-century concept and studies that attribute vesicle-coat contents' function to Ω-profile formation and classify budding as coat-protein (e.g., clathrin)-dependent or -independent may need to be re-defined and re-examined by considering clathrin's pivotal role in pore constriction/closure.

13.
Biophys J ; 105(1): L01-3, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23823248

RESUMEN

We report on a fiber laser-based stimulated emission-depletion microscope providing down to ∼20 nm resolution in raw data images as well as 15-19 nm diameter probing areas in fluorescence correlation spectroscopy. Stimulated emission depletion pulses of nanosecond duration and 775 nm wavelength are used to silence two fluorophores simultaneously, ensuring offset-free colocalization analysis. The versatility of this superresolution method is exemplified by revealing the octameric arrangement of Xenopus nuclear pore complexes and by quantifying the diffusion of labeled lipid molecules in artificial and living cell membranes.


Asunto(s)
Difusión , Microscopía Fluorescente/métodos , Nanotecnología/métodos , Animales , Supervivencia Celular , Color , Rayos Láser , Microscopía Fluorescente/instrumentación , Nanotecnología/instrumentación , Fibras Ópticas , Xenopus
14.
Bioconjug Chem ; 24(4): 690-700, 2013 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-23517127

RESUMEN

Asymmetric hybrid fluorophores are built from the structural elements of two (or even more) symmetric dyes and can develop valuable new features which their parents do not possess. A new hybrid carborhodol dye was obtained by the combination of fluorescein and carbopyronine fluorophores. The brightly fluorescent hybrid dye with a linker and reactive group was prepared in 12 steps with overall yield of 1.6%. In aqueous solutions, it has absorption and emission maxima at 586 and 613 nm, respectively. Antibodies labeled with a carborhodol dye possess broad absorption and emission bands so that the effective Stokes shift is increased (compared with small Stokes shifts of the parent dyes) and the fluorescence quantum yield of 39% at a degree of labeling of 5.2. Two samples of secondary antibodies labeled with carborhodol and the benchmark red-emitting rhodamine dye (KK114) were used in two-color imaging experiments with excitation at 514-532 (carborhodol dye) and 633-640 nm (KK114). When emitted light was detected above 650 nm, the novel carborhodol dye provided a lower crosstalk than spectrally similar emitters (e. g., Atto594; crosstalk 40-60% with KK114 under the same conditions). The optical resolution of ca. 80 nm was attained using the new dye in stimulated emission depleted (STED) microscopy. The relatively short fluorescence lifetime in conjugates with antibodies (τ = 1.2-1.6 ns) suggests the possibility of dual FLIM with numerous dyes having τ values in the range of 3-5 ns. All of these features make the carborhodol fluorophore a valuable addition to the family of the red-emitting fluorescent dyes.


Asunto(s)
Antracenos/síntesis química , Fluoresceína/química , Colorantes Fluorescentes/síntesis química , Animales , Antracenos/química , Chlorocebus aethiops , Colorantes Fluorescentes/química , Estructura Molecular , Células Vero
15.
Dev Cell ; 58(23): 2641-2651.e6, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37890489

RESUMEN

Choroid plexuses (ChPs) produce cerebrospinal fluid and sense non-cell-autonomous stimuli to control the homeostasis of the central nervous system. They are mainly composed of epithelial multiciliated cells, whose development and function are still controversial. We have thus characterized the stepwise order of mammalian ChP epithelia cilia formation using a combination of super-resolution-microscopy approaches and mouse genetics. We show that ChP ciliated cells are built embryonically on a treadmill of spatiotemporally regulated events, starting with atypical centriole amplification and ending with the construction of nodal-like 9+0 cilia, characterized by both primary and motile features. ChP cilia undergo axoneme resorption at early postnatal stages through a microtubule destabilization process controlled by the microtubule-severing enzyme spastin and mitigated by polyglutamylation levels. Notably, this phenotype is preserved in humans, suggesting a conserved ciliary resorption mechanism in mammals.


Asunto(s)
Axonema , Cilios , Humanos , Ratones , Animales , Cilios/fisiología , Células Epiteliales/fisiología , Epitelio , Coroides , Mamíferos
16.
Chemistry ; 18(41): 12986-98, 2012 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-22968960

RESUMEN

Fluorescent dyes emitting red light are frequently used in conventional and super-resolution microscopy of biological samples, although the variety of the useful dyes is limited. We describe the synthesis of rhodamine-based fluorescent dyes with absorption and emission maxima in the range of 621-637 and 644-660 nm, respectively and demonstrate their high performance in confocal and stimulated emission depletion (STED) microscopy. New dyes were prepared by means of reliable chemical transformations applied to a rhodamine scaffold with three variable positions. They feature polarity, water solubility, variable net charges, improved stabilities of N-hydroxysuccinimidyl (NHS) esters, as well as large fluorescence quantum yields in dye solutions and antibody conjugates. The photophysical and imaging properties of dyes containing three different polar groups, namely primary phosphate, sulfonic acid (in two different positions), and hydroxyl were compared. A dye with two primary phosphate groups was explored as a valuable alternative to dyes with "classical" sulfonic acid groups. Due to the increased net charge of the phosphorylated dye (q=-4 at pH 8), it demonstrated a far better electrophoretic mobility compared with analogues with two sulfonic acid groups (q=-2). As an example, one fluorescent dye was designed to be especially convenient for practical use. It is characterized by sufficiently high chemical stability of the NHS ester, its simple isolation, handling, and solubility in aqueous buffers, as well as in organic solvents. All these features, accompanied by a zero net charge in conjugates, were accomplished by the introduction of hydrophilic groups of two types: two hydroxyl groups and one sulfonic acid residue.


Asunto(s)
Colorantes Fluorescentes/química , Rodaminas/química , Ácidos Sulfónicos/química , Hidroxilación , Microscopía Fluorescente , Nanotecnología , Fosforilación , Solubilidad , Soluciones/química
17.
Sci Adv ; 8(28): eabl7560, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35857490

RESUMEN

Cells assemble macromolecular complexes into scaffoldings that serve as substrates for catalytic processes. Years of molecular neurobiology research indicate that neurotransmission depends on such optimization strategies. However, the molecular topography of the presynaptic active zone (AZ), where transmitter is released upon synaptic vesicle (SV) fusion, remains to be visualized. Therefore, we implemented MINFLUX optical nanoscopy to resolve the AZ of rod photoreceptors. This was facilitated by a novel sample immobilization technique that we name heat-assisted rapid dehydration (HARD), wherein a thin layer of rod synaptic terminals (spherules) was transferred onto glass coverslips from fresh retinal slices. Rod ribbon AZs were readily immunolabeled and imaged in 3D with a precision of a few nanometers. Our 3D-MINFLUX results indicate that the SV release site in rods is a molecular complex of bassoon-RIM2-ubMunc13-2-Cav1.4, which repeats longitudinally on both sides of the ribbon.

18.
Methods Appl Fluoresc ; 11(1)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36541558

RESUMEN

The resolution achievable with the established super-resolution fluorescence nanoscopy methods, such as STORM or STED, is in general not sufficient to resolve protein complexes or even individual proteins. Recently, minimal photon flux (MINFLUX) nanoscopy has been introduced that combines the strengths of STED and STORM nanoscopy and can achieve a localization precision of less than 5 nm. We established a generally applicable workflow for MINFLUX imaging and applied it for the first time to a bacterial molecular machinein situ, i.e., the injectisome of the enteropathogenY. enterocolitica. We demonstrate with a pore protein of the injectisome that MINFLUX can achieve a resolution down to the single molecule levelin situ. By imaging a sorting platform protein using 3D-MINFLUX, insights into the precise localization and distribution of an injectisome component in a bacterial cell could be accomplished. MINFLUX nanoscopy has the potential to revolutionize super-resolution imaging of dynamic molecular processes in bacteria and eukaryotes.


Asunto(s)
Bacterias , Microscopía Fluorescente/métodos
19.
Biophys J ; 100(12): L63-5, 2011 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-21689517

RESUMEN

We report superresolution fluorescence microscopy in an intact living organism, namely Caenorhabditis elegans nematodes expressing green fluorescent protein (GFP)-fusion proteins. We also superresolve, by stimulated emission depletion (STED) microscopy, living cultured cells, demonstrating that STED microscopy with GFP can be widely applied. STED with GFP can be performed with both pulsed and continuous-wave lasers spanning a wide wavelength range from at least 556-592 nm. Acquiring subdiffraction resolution images within seconds enables the recording of movies revealing structural dynamics. These results demonstrate that numerous microscopy studies of live samples employing GFP as the marker can be performed at subdiffraction resolution.


Asunto(s)
Caenorhabditis elegans/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente/métodos , Nanotecnología/métodos , Saccharomyces cerevisiae/metabolismo , Absorción , Animales , Caenorhabditis elegans/citología , Neuronas/citología , Neuronas/metabolismo , Saccharomyces cerevisiae/citología , Análisis Espectral
20.
Nat Methods ; 5(6): 539-44, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18488034

RESUMEN

The resolution of any linear imaging system is given by its point spread function (PSF) that quantifies the blur of an object point in the image. The sharper the PSF, the better the resolution is. In standard fluorescence microscopy, however, diffraction dictates a PSF with a cigar-shaped main maximum, called the focal spot, which extends over at least half the wavelength of light (lambda = 400-700 nm) in the focal plane and >lambda along the optical axis (z). Although concepts have been developed to sharpen the focal spot both laterally and axially, none of them has reached their ultimate goal: a spherical spot that can be arbitrarily downscaled in size. Here we introduce a fluorescence microscope that creates nearly spherical focal spots of 40-45 nm (lambda/16) in diameter. Fully relying on focused light, this lens-based fluorescence nanoscope unravels the interior of cells noninvasively, uniquely dissecting their sub-lambda-sized organelles.


Asunto(s)
Biofisica/métodos , Microscopía Fluorescente/métodos , Nanotecnología/métodos , Animales , Bioquímica/métodos , Chlorocebus aethiops , Colorantes Fluorescentes/farmacología , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional , Rayos Láser , Microscopía Fluorescente/instrumentación , Modelos Estadísticos , Nanopartículas , Óptica y Fotónica , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA