Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Inorg Chem ; 63(1): 881-890, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38130105

RESUMEN

CO2 methanation has attracted considerable attention as a promising strategy for recycling CO2 and generating valuable methane. This study presents a niobium-doped CeO2-supported Ni catalyst (Ni/NbCe), which demonstrates remarkable performance in terms of CO2 conversion and CH4 selectivity, even when operating at a low temperature of 250 °C. Structural analysis reveals the incorporation of Nb species into the CeO2 lattice, resulting in the formation of a Nb-Ce-O solid solution. Compared with the Ni/CeO2 catalyst, this solid solution demonstrates an improved spatial distribution. To comprehend the impact of the Nb-Ce-O solid solution on refining the electronic properties of the Ni-Ce interfacial sites, facilitating H2 activation, and accelerating the hydrogenation of CO2* into HCOO*, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis and density functional theory (DFT) calculations were conducted. These investigations shed light on the mechanism through which the activity of CO2 methanation is enhanced, which differs from the commonly observed CO* pathway triggered by oxygen vacancies (OV). Consequently, this study provides a comprehensive understanding of the intricate interplay between the electronic properties of the catalyst's active sites and the reaction pathway in CO2 methanation over Ni-based catalysts.

2.
Inorg Chem ; 63(2): 1035-1045, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38171367

RESUMEN

The electrocatalytic CO2 reduction (CO2RR) is an effective and economical strategy to eliminate CO2 through conversion into value-added chemicals and fuels. However, exploring and screening suitable 2D material-based single-atom catalysts (SACs) for CO2 reduction are still a great challenge. In this study, 27 (3d, 4d, and 5d, except Tc and Hg) transition metal (TM) atom-doped black phosphorus (TM@BP) electrocatalysts were systematically investigated for CO2RR by density functional theory calculations. According to the stability of SACs and their effectiveness in activating the CO2 molecule, three promising catalysts, Zr@BP, Nb@BP, and Ru@BP, were successfully screened out, exhibiting outstanding catalytic activity for the production of carbon monoxide (CO), methyl alcohol (CH3OH), and methane (CH4) with limiting potentials of -0.79, -0.49, and -0.60 V, respectively. A catalytic relationship between the d-band centers of SACs and the limiting potential of CO2RR was used to estimate the catalytic activity of catalysts. Furthermore, Nb@BP has high selectivity for CO2RR to CH3OH compared to H2 formation, while the hydrogen evolution reaction significantly impacts the synthesis of CO and CH4 on Zr@BP and Ru@BP. Nitrogen atom doping in BP is beneficial for enhancing the selectivity of CO2RR, but it is detrimental to the activity of CO2RR. This study offers theoretical guidance for synthesizing highly efficient CO2RR electrocatalysts and further enhances structural modulation methods for layered 2D materials.

3.
Small ; 19(48): e2304612, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37533398

RESUMEN

Selective hydrogenolysis of glycerol to 1,3-propanediol (1,3-PDO) is recognized as one of the most promising reactions for the valorization of biomass. Precise activation of C─O bonds of glycerol molecule is the key step to realize the high yield of catalytic conversion. Here, a Pt-loaded Nb-W composite oxides with crystallographic shear phase for the precise activation and cleavage of secondary C─O (C(2)─O) bonds are first reported. The developed Nb14 W3 O44 with uniform structure possesses arrays of W-O-Nb active sites that totally distinct from individual WOx or NbOx species, which is superior to the adsorption and activation of C(2)─O bonds. The Nb14 W3 O44 support with rich reversible redox couples also promotes the electron feedback ability of Pt and enhances its interaction with Pt nanoparticles, resulting in high activity for H2 dissociation and hydrogenation. All these favorable factors confer the Pt/Nb14 W3 O44 excellent performance for selective hydrogenolysis of glycerol to 1,3-PDO with the yield of 75.2% exceeding the record of 66%, paying the way for the commercial development of biomass conversion. The reported catalysts or approach can also be adopted to create a family of Nb-W metal composite oxides for other catalytic reactions requiring selective C─O bond activation and cleavage.

4.
Acc Chem Res ; 55(9): 1301-1312, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35416643

RESUMEN

Escalating energy demand, the depletion of fossil fuels, and abnormal climate change are recognized as the key challenges in the 21st century. The valorization of biomass and plastic, representing the most abundant natural and man-made polymers, respectively, as alternatives to fossil fuel is one of the promising solutions to creating a carbon-neutral, waste-free society. Catalysis is an essential tool for manipulating energy transformations via bond-breaking and bond-forming principles. To producing chemicals and fuels via biomass valorization and plastic upcycling, the cleavage of C-O and C-C bonds is the major catalytic route, given that the two are mainly constructed by various interunit C-O and C-C linkages. In this work, a consensus concerning the catalytic mechanism is reached: the activities for the cleavage of C-O and C-C bonds highly depend on the catalyst ability to activate the C-O and C-C bonds. Among the catalysts reported, NbOx-based catalysts show a unique, superstrong ability to activate C-O and C-C bonds. While research on biomass valorization over NbOx-based catalysts maintains its momentum, plastic upcycling driven by an efficient NbOx-based catalyst capable of activating C-O and C-C bonds is quickly catching up. Therefore, deepening the understanding of NbOx-based catalysts for the activation of C-O and C-C bonds is of importance to further drive biomass valorization and plastic upcycling, even in many other related areas. Herein, we present progress on the activation of C-O and C-C bonds in waste carbon resources, with an emphasis on our own work in using NbOx-based catalysts. First, we introduce NbOx-based catalysts for the activation of C-O and C-C bonds in biomass with a special focus on explaining how NbOx-based catalysts activate C-O and C-C bonds and why NbOx-based catalysts can activate C-O and C-C bonds so efficiently. Then, unified descriptors to embody the abilities to extract O from oxygenated compounds and an adsorbed benzene ring, namely "oxygen affinity" and "benzene ring affinity", were defined to standardize C-O and Carom-Caliph activation chemistry. Furthermore, we highlight the emerging opportunities of NbOx-based catalysts for plastic upcycling by learning the wisdom accumulated from the activation of C-O and C-C bonds in biomass. Finally, our own insights into future recommendations in this promising field are provided.


Asunto(s)
Benceno , Carbono , Biomasa , Catálisis , Humanos , Plásticos
5.
Inorg Chem ; 61(47): 18957-18969, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36374189

RESUMEN

The electrochemical carbon dioxide reduction reaction (CO2RR) has been extensively studied due to its potential to reduce the globally accelerating CO2 emission and produce value-added chemicals and fuels. Despite great efforts to optimize the catalyst activity and selectivity, the development of robust design criteria for screening the catalysts and understanding the role of water and potassium for CO2 activation poses a significant challenge. Herein, a rapid method for screening single-atom catalysts (SACs) possessing different coordination structures toward the CO2RR process to form CO, namely, a metal atom supported on nitrogen-doped carbon nanotubes (M@CNT, M@1N_CNT, M@2N_CNT, and M@3N_CNT), was established using large-scale density functional theory computations. Adopting the free energy of *CO2 and *OH as screening descriptors, Fe@CNT, Cu@1N_CNT, Pd@2N_CNT, and Ni@3N_CNT were found to exhibit high activity for CO in the gas phase with the overpotential values of 0.22, 0.11, 0.13, and 0.05 V, respectively. Water and potassium present on the surface of the active sites can accelerate the activation of CO2 relative to the gas phase. Ni@3N_CNT shows the highest activity and selectivity in the environment having four water and one potassium. Particularly, the least absolute shrinkage and selection operator regression study revealed that the CO2 adsorption is intrinsically governed by the number of electrons lost by the metal atom in the three N-doped systems, which can be correlated to the distance of the metal atom from the plane of the coordination atom in the M@CNT system. Besides, the study proposes equations for the calculation of the free energy of CO2 adsorption. The current work not only advances the exploration of highly active SACs for the heterogeneous electrocatalytic systems for CO2RR but also highlights the significance of water and potassium in the aqueous solution.

6.
Mikrochim Acta ; 187(11): 606, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33052480

RESUMEN

An efficient method is reported to prepare endoplasmic reticulum-targetable dual-metallic gold-silver nanoclusters, denoted as ER-Au/Ag nanoclusters (NCs), by virtue of a rationally designed molecular ligand. The prepared ER-Au/Ag NCs possesses red-emitting fluorescence with a strong emission at 622 nm and a high fluorescence quantum yield of 5.1%, which could avoid the influence of biological auto-fluorescence. Further investigation results showed that ER-Au/Ag NCs exhibited superior photostability, minimal cytotoxicity, and ER-targeting capability. Enabled by these meritorious features, ER-Au/Ag NCs have been successfully employed for long-term bioimaging of ER in living cells.Graphical abstract A sensitive non-enzymatic fluorescent glucose probe-based ZnO nanorod decorated with Au nanoparticles.


Asunto(s)
Retículo Endoplásmico/metabolismo , Colorantes Fluorescentes/química , Nanopartículas del Metal/química , Animales , Fluorescencia , Oro/química , Células HeLa , Humanos , Ratones , Microscopía Confocal , Microscopía Fluorescente , Células RAW 264.7 , Plata/química , Sulfonamidas/química , Ácido Tióctico/análogos & derivados
7.
Chemistry ; 22(9): 2910-4, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26757235

RESUMEN

A simple but effective method to exfoliate bulk MoS2 in a range of solvents is presented for the preparation of colloid flakes consisted of one to a few molecular layers by application of ultrasonic treatment in N2 H4 . Their high yield in solution and exposure of more active surface sites allows the synthesis of corresponding solid catalysts with remarkably high activity in hydrodeoxygenation of 4-methylphenol and this method can also be applied to other two dimensional materials.

8.
Angew Chem Int Ed Engl ; 53(37): 9755-60, 2014 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-25045056

RESUMEN

Great efforts have been made to convert renewable biomass into transportation fuels. Herein, we report the novel properties of NbO(x)-based catalysts in the hydrodeoxygenation of furan-derived adducts to liquid alkanes. Excellent activity and stability were observed with almost no decrease in octane yield (>90% throughout) in a 256 h time-on-stream test. Experimental and theoretical studies showed that NbO(x) species play the key role in C-O bond cleavage. As a multifunctional catalyst, Pd/NbOPO4 plays three roles in the conversion of aldol adducts into alkanes: 1) The noble metal (in this case Pd) is the active center for hydrogenation; 2) NbO(x) species help to cleave the C-O bond, especially of the tetrahydrofuran ring; and 3) a niobium-based solid acid catalyzes the dehydration, thus enabling the quantitative conversion of furan-derived adducts into alkanes under mild conditions.


Asunto(s)
Alcanos/química , Furanos/metabolismo , Paladio/química , Catálisis
9.
Adv Sci (Weinh) ; 11(29): e2402651, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38816938

RESUMEN

Hydrogen (H2) has emerged as a clean and versatile energy carrier to power a carbon-neutral economy for the post-fossil era. Hydrogen generation from low-cost and renewable biomass by virtually inexhaustible solar energy presents an innovative strategy to process organic solid waste, combat the energy crisis, and achieve carbon neutrality. Herein, the progress and breakthroughs in solar-powered H2 production from biomass are reviewed. The basic principles of solar-driven H2 generation from biomass are first introduced for a better understanding of the reaction mechanism. Next, the merits and shortcomings of various semiconductors and cocatalysts are summarized, and the strategies for addressing the related issues are also elaborated. Then, various bio-based feedstocks for solar-driven H2 production are reviewed with an emphasis on the effect of photocatalysts and catalytic systems on performance. Of note, the concurrent generation of value-added chemicals from biomass reforming is emphasized as well. Meanwhile, the emerging photo-thermal coupling strategy that shows a grand prospect for maximally utilizing the entire solar energy spectrum is also discussed. Further, the direct utilization of hydrogen from biomass as a green reductant for producing value-added chemicals via organic reactions is also highlighted. Finally, the challenges and perspectives of photoreforming biomass toward hydrogen are envisioned.

10.
Chem Commun (Camb) ; 60(9): 1100-1103, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38165284

RESUMEN

A mitochondria-targeted ratiometric fluorescent probe (Mito-Zn) was first designed and synthesized with dual emissions both located in the near-infrared region, for Zn2+ detection with high sensitivity and selectivity. By using the developed Mito-Zn, a high level of Zn2+ in the depressed mouse brain was discovered for the first time.


Asunto(s)
Encéfalo , Colorantes Fluorescentes , Ratones , Animales , Encéfalo/diagnóstico por imagen , Mitocondrias , Zinc
11.
J Colloid Interface Sci ; 665: 443-451, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38537590

RESUMEN

Despite great efforts that have been made, photocatalytic carbon dioxide (CO2) reduction still faces enormous challenges due to the sluggish kinetics or disadvantageous thermodynamics. Herein, cadmium sulfide quantum dots (CdS QDs) were loaded onto carbon, oxygen-doped boron nitride (BN) and encapsulated by titanium carbide (Ti3C2, MXene) layers to construct a ternary composite. The uniform distribution of CdS QDs and the tight interfacial interaction among the three components could be achieved by adjusting the loading amounts of CdS QDs and MXene. The ternary 100MX/CQ/BN sample gave a productive rate of 2.45 and 0.44 µmol g-1 h-1 for carbon monoxide (CO) and methane (CH4), respectively. This CO yield is 1.93 and 6.13 times higher than that of CdS QDs/BN and BN counterparts. The photocatalytic durability of the ternary composite is significantly improved compared with CdS QDs/BN because MXene can protect CdS from photocorrosion. The characterization results demonstrate that the excellent CO2 adsorption and activation capabilities of BN, the visible light absorption of CdS QDs, the good conductivity of MXene and the well-matched energy band alignment jointly promote the photocatalytic performance of the ternary catalyst.

12.
J Colloid Interface Sci ; 641: 990-999, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36989825

RESUMEN

Urea is ubiquitous in agriculture and industry, but its production consumes a lot of energy. The conversion of nitrogen (N2) and carbon dioxide (CO2) into urea via an electrocatalytic CN coupling reaction under ambient conditions would be a major boon to sustainable development. However, designing a metal - free catalyst with high activity and selectivity for urea remains a major challenge. Herein, by means of density functional theory (DFT) and ab - initio molecular dynamics (AIMD) computations, the B12 cluster doped on nitrogenated graphene (C2N) substrate catalyst (B12@C2N) with superior stability was designed for electrocatalytic urea synthesis starting from the CO2 and N2 through four reaction mechanisms. The nature of the co-adsorption activation of CO2 and N2 on the B12@C2N catalyst was investigated, the electrochemical proton - electron transfer steps and the CN thermochemical coupling led to the synthesis of urea. The study showed that the B12@C2N catalyst exhibited high catalytic activity for urea synthesis with the lowest limiting potential of - 1.01 V following the *HNNH mechanism compared with other mechanisms. The potential - determining step (PDS) is the formation of the *CO+*NH2NH2 species. However, the two - step CN coupling barriers of *NCON species are 0.13 eV and 0.60 eV using AIMD and a "slow - growth" sampling approach in an explicit water molecules model. Calculations also showed that the byproducts of carbon monoxide (CO), methane (CH4), methanol (CH3OH), ammonia (NH3), and hydrogen (H2) can be inhibited on the B12@C2N catalyst. Therefore, the metal - free catalyst not only has a good performance for the hydrogenation of CO2 and N2 promoting the electrochemical reaction, but also facilitates CN thermochemical coupling for urea synthesis. This work provides new insights into the synthesis of urea via the CN coupling reaction on a metal - free electrocatalyst, a process that could contribute to greenhouse gas mitigation to help meet carbon neutrality targets.

13.
J Colloid Interface Sci ; 640: 949-960, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36907155

RESUMEN

Photocatalytic reduction of carbon dioxide (CO2) into fuels is an auspicious route to alleviate the energy and environmental crisis brought by the continuous depletion of fossil fuels. The CO2 adsorption state on the surface of photocatalytic materials plays a significant role in its efficient conversion. The limited CO2 adsorption capacity of conventional semiconductor materials inhibit their photocatalytic performances. In this work, a bifunctional material for CO2 capture and photocatalytic reduction was fabricated by introducing palladium (Pd)-copper (Cu) alloy nanocrystals onto the surface of carbon, oxygen co-doped boron nitride (BN). The elemental doped BN with abundant ultra-micropores had high CO2 capture ability, and CO2 was adsorbed in the form of bicarbonate on its surface with the presence of water vapor. The Pd/Cu molar ratio had great impact on the grain size of Pd-Cu alloy and their distribution on BN. The CO2 molecules tended to be converted to carbon monoxide (CO) at interfaces of BN and Pd-Cu alloys due to their bidirectional interactions to the adsorbed intermediate species while methane (CH4) evolution might occur on the surface of Pd-Cu alloys. Owing to the uniform distribution of smaller Pd-Cu nanocrystals on BN, more effective interfaces were created in the Pd5Cu1/BN sample and it gave a CO production rate of 7.74 µmolg-1h-1 under simulated solar light irradiation, higher than the other PdCu/BN composites. This work can pave a new way for constructing effective bifunctional photo-catalysts with high selectivity to convert CO2 to CO.

14.
Chem Commun (Camb) ; 59(97): 14435-14438, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37982192

RESUMEN

IL/ICOF composites were in situ synthesized via a one-pot route in half an hour under ambient conditions for catalytic cycloaddition of CO2 with epoxides into cyclic carbonates. The prepared composites feature a decent CO2 adsorption capacity of 1.63 mmol g-1 at 273 K and 1 bar and exhibit excellent catalytic performance in terms of yield and durability. This work may pave a new way to design and construct functionalized porous organic frameworks as heterogeneous catalysts for CO2 capture and conversion.

15.
Front Chem ; 10: 1004925, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212063

RESUMEN

The selective hydrogenolysis of glycerol to 1,3-propanediol (1,3-PDO) with high added value is attraction but challenging. Pt-WOx-based catalysts have been extensively studied in the selective hydrogenolysis of glycerol. The catalyst support and the physicochemical state of WOx play important roles on this reaction. In this paper, Pt-WOx catalysts supported on TiO2 with different crystal forms were prepared and studied for their catalytic performance in hydrogenolysis of glycerol. It was observed that the catalytic performance of anatase-type (A-type) TiO2-supported catalyst (Pt/W/A-Ti) is much better than that of the rutile-type (R-type) TiO2 catalyst (Pt/W/R-Ti) due to its higher stability. Furthermore, the influence of W loading amount and state were thoroughly investigated for the Pt/W/A-Ti catalysts, and Pt/W/A-TiO2 with 5 wt% loading of WOx achieved the best catalytic performance (100% conversion of glycerol and 41% yield of 1,3-PDO under the optimal reaction conditions), owing to the suitable WOx domains and high dispersion of W species, as evidenced by XRD patterns and TEM images. Mechanism study by in-situ DRIFTS experiments indicated that glycerol was first converted to 3-hydroxypropanal and then converted to 1,3-PDO through subsequent reactions.

16.
Front Chem ; 10: 979353, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072701

RESUMEN

Efficient conversion of biomass-derived 5-hydroxymethylfurfural (HMF) to renewable fuels such as 2,5-dimethylfuran (DMF) and 2,5-dimethyltetrahydrofuran (DMTHF) is of significance for sustainable energy supply. For efficient catalyst design, it is important to understand the catalytic behavior and clarify the influence of physico-chemical properties of catalyst on reaction performance. Herein, to study the structure-activity relationships of monometallic Cu catalysts for HMF hydrogenolysis, a series of Cu/SiO2 catalysts with different physico-chemical properties were prepared and compared for their catalytic performance in HMF hydrogenolysis. It was found that Cu/SiO2-HT-8.5 catalyst prepared by hydrothermal method showed excellent activity in HMF hydrohydrolysis reaction. Under the optimal reaction condition, the total yield of liquid fuels reaches 91.6% with 57.1% yield of DMF and 34.5% yield of DMTHF in THF solvent. Characterizations such as XRD, H2-TPR, N2-adsorption/desorption, TEM and XPS revealed that the Cu particles in the Cu/SiO2-HT-8.5 catalyst have uniform size and high dispersion. The Cu species and the SiO2 support have relatively weak interaction and are easy to be reduced to Cu0, which makes it show excellent activity in the hydrogenolysis of HMF.

17.
J Colloid Interface Sci ; 628(Pt B): 649-659, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36027775

RESUMEN

Membranes based on transition metal carbides/nitrides (MXenes) have significant water treatment potential because of their unique molecular sieving properties and excellent permeation performance. However, hydrophilic MXenes swell upon water immersion, and improving their stability remains challenging. In this study, a Fe3+-tannic acid (TA) complex was used as a cross-linker and surface modifier to prepare high-performance titanium carbide (Ti3C2Tx) MXene laminar membranes. Fe3+-TA formation on the nanosheets increased the interlayer spacing and stabilized the laminar structure. The membrane with the highest performance among the as-prepared membranes exhibited a high water permeance of 90.5 L/m-2(-|-)h-1 bar-1 (which is twice that of the pristine Ti3C2Tx membrane) and good separation efficiency (methyl blue rejection rate: ∼99.8 %; Na2SO4 rejection rate: ∼5.0 %). Furthermore, the Fe3+-TA complex enhanced the membrane hydrophilicity, resulting in excellent antifouling properties. This study provides an environmentally friendly and facile method for fabricating two-dimensional loose nanofiltration membranes for textile wastewater treatment.


Asunto(s)
Polifenoles , Purificación del Agua , Purificación del Agua/métodos , Titanio , Taninos
18.
Chem Asian J ; 17(2): e202101256, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34913596

RESUMEN

Amines are an important class of compounds in natural products and medicines. The universal availability of amides provides a potential way for the synthesis of amines. Herein, Ru/Nb2 O5 catalyst is demonstrated to be highly efficient and stable for the selective hydrogenation of propionamide to propylamine (as a model reaction), with up to 91.4% yield of propylamine under relatively mild conditions. Results from XPS analyses, CO chemisorption, TEM images and DRIFTS spectra revealed that the unique properties of Nb2 O5 can effectively activate the C=O group of amides, and the smaller Ru particles on Nb2 O5 could further promote the activation, leading to superior catalytic performance of Ru/Nb2 O5 for amide hydrogenation. Meanwhile, reducing the surface acidity of Nb2 O5 can greatly inhibit the side reactions to by-products, and further enhance the selectivity to amine. Moreover, this catalytic system is also applicable for the hydrogenation of a variety of amides and provides high potential for the industrial production of primary amines from amides.


Asunto(s)
Aminas , Niobio , Amidas , Catálisis , Hidrogenación
19.
Chem Commun (Camb) ; 58(53): 7412-7415, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35695213

RESUMEN

We report significantly enhanced electrochemical CO2 reduction (ECR) to C2H4 by tuning the interface of a metal oxide composite (CuOx/HfO2), enabling a C2H4 faradaic efficiency as high as 62.6 ± 1.3% at 300 mA cm-2, in contrast to only 11.6 ± 1.6% over pure CuO. Collective knowledge from multiple control experiments, density functional theory calculations, and operando Raman study reveals that the CuOx-HfO2 interface greatly strengthens CO2 adsorption and the binding of *CO for further C-C coupling to yield C2H4.

20.
J Colloid Interface Sci ; 620: 77-85, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35421755

RESUMEN

The incipient wetness impregnation (IWI) method is widely used in the preparation of supported transition metal catalysts for its high throughput and cost-effective synthesis, yet suffers from poor metal-support interaction, restricting its further application at an industrial scale. Herein, a universal strategy of chelation coupled impregnation (CCI) is presented. The as-prepared Ni/CeO2(CCI) showed superior catalytic performance for CO2 conversion (84.3%) and CH4 selectivity (100%) under the experimental conditions (WGHSV = 24,000 mL g-1 h-1 and H2/CO2 = 4:1) even at low temperatures (T = 275 °C). The surface characterization results confirmed that the agglomeration of metal active sites in Ni/CeO2(CCI) was restricted and more surface oxygen vacancies were generated on CeO2. Further, the in-situ diffuse reflectance infrared Fourier transform spectroscopy (in-situ DRIFTS) analysis suggested that the surface oxygen vacancies that served as active sites could facilitate the direct dissociation of CO2 more favorably than the associative route, thus significantly promoting CO2 methanation activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA