Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Appl Environ Microbiol ; 90(3): e0181823, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38332488

RESUMEN

Zearalenone (ZEN) and its derivatives are estrogenic mycotoxins known to pose significant health threats to humans and animals. Especially, the derivative α-zearalanol (α-ZAL) is over 10 times more toxic than ZEN. Simultaneous degradation of ZEN and its derivatives, especially α-ZAL, using ZEN lactone hydrolases (ZHDs) is a promising solution to eliminate their potential hazards to food safety. However, most available ZHDs exhibit limited activity toward the more toxic α-ZAL compared to ZEN. Here, we identified a broad-substrate spectrum ZHD, named ZHDAY3, from Exophiala aquamarina CBS 119918, which could not only efficiently degrade ZEN but also exhibited 73% relative activity toward α-ZAL. Through rational design, we obtained the ZHDAY3(N153H) mutant, which exhibited the highest specific activity (253.3 ± 4.3 U/mg) reported so far for degrading α-ZAL. Molecular docking, structural comparative analysis, and kinetic analysis collectively suggested that the shorter distance between the side chain of the catalytic residue His242 and the lactone bond of α-ZAL and the increased binding affinity to the substrate were mainly responsible for the improved catalytic activity of ZHDAY3(N153H) mutant. This mechanism was further validated through additional molecular docking of 18 mutants and experimental verification of six mutants.IMPORTANCEThe mycotoxins zearalenone (ZEN) and its derivatives pose a significant threat to food safety. Here, we present a highly promising ZEN lactone hydrolase (ZHD), ZHDAY3, which is capable of efficiently degrading both ZEN and the more toxic derivative α-ZAL. Next, the ZHDAY3(N153H) mutant obtained by single-point mutation exhibited the highest specific activity for degrading α-ZAL reported thus far. We further elucidated the molecular mechanisms underlying the enhanced hydrolytic activity of ZHDAY3(N153H) toward α-ZAL. These findings represent the first investigation on the molecular mechanism of ZHDs against α-ZAL and are expected to provide a significant reference for further rational engineering of ZHDs, which will ultimately contribute to addressing the health risks and food safety issues posed by ZEN-like mycotoxins.


Asunto(s)
Micotoxinas , Zearalenona , Zeranol , Humanos , Animales , Zearalenona/química , Zearalenona/metabolismo , Zeranol/química , Zeranol/metabolismo , Lactonas , Mutación Puntual , Hidrolasas/metabolismo , Simulación del Acoplamiento Molecular , Cinética , Micotoxinas/metabolismo
2.
Metab Eng ; 74: 150-159, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36328294

RESUMEN

Elegant controllable protein degradation tools have great applications in metabolic engineering and synthetic biology designs. SspB-mediated ClpXP proteolysis system is well characterized, and SspB acts as an adaptor tethering ssrA-tagged substrates to the ClpXP protease. This degron was applied in metabolism optimization, but the efficiency was barely satisfactory. Limited high-quality tools are available for controllable protein degradation. By coupling structure-guided modeling and directed evolution, we establish state-of-the-art high-throughput screening strategies for engineering both degradation efficiency and SspB-ssrA binding specificity of this degron. The reliability of our approach is confirmed by functional validation of both SspB and ssrA mutants using fluorescence assays and metabolic engineering of itaconic acid or ferulic acid biosynthesis. Isothermal titration calorimetry analysis and molecular modeling revealed that an appropriate instead of excessively strong interaction between SspB and ssrA benefited degradation efficiency. Mutated SspB-ssrA pairs with 7-22-fold higher binding KD than the wild-type pair led to higher degradation efficiency, revealing the advantage of directed evolution over rational design in degradation efficiency optimization. Furthermore, an artificial SspB-ssrA pair exhibiting low crosstalk of interactions with the wild-type SspB-ssrA pair was also developed. Efforts in this study have demonstrated the plasticity of SspB-ssrA binding pocket for designing high-quality controllable protein degradation tools. The obtained mutated degrons enriched the tool box of metabolic engineering designs.


Asunto(s)
Endopeptidasa Clp , Proteínas de Escherichia coli , Endopeptidasa Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteolisis , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Reproducibilidad de los Resultados , Proteínas Portadoras/metabolismo
3.
Protein Expr Purif ; 102: 20-6, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25093899

RESUMEN

A new endoglucanase gene cel124 was cloned from a metagenomic library and expressed in Escherichiacoli. Catalytic triad analysis showed that the catalytic triad sites were different from the known endoglucanases. Cel124, a 34 kDa protein, exhibited a specific activity (29.08 U mg(-1)) toward 1% of sodium carboxymethyl cellulose and was stable at 50 °C for 30 min. The optimal temperature and pH for its catalytic activity were 50 °C and pH 5.5 respectively. Cel124 could hydrolyze soluble cellulose, but not insoluble cellulose or other polysaccharides. The kinetic parameters (5.63 mg ml(-1) for Km and 0.0397 mmol min(-1) mg(-1) for Vmax) were measured. 3M NaCl in the system could increase its activity by 2 fold. Site-directed mutation and circular dichroism spectra test suggested that the residue (Glu41) was essential for its activity, might be a potential active site. Based on our data, we proposed that Cel124 might represent a new type of endoglucanase.


Asunto(s)
Celulasa/genética , Clonación Molecular/métodos , Escherichia coli/genética , Biblioteca de Genes , Metagenómica/métodos , Rhizobiaceae/enzimología , Secuencia de Aminoácidos , Celulasa/química , Celulasa/metabolismo , Celulosa/metabolismo , Genoma Bacteriano , Concentración de Iones de Hidrógeno , Cinética , Filogenia , Rhizobiaceae/genética , Especificidad por Sustrato , Temperatura
4.
Int J Biol Macromol ; 266(Pt 2): 131352, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574926

RESUMEN

Domain engineering, including domain truncation, fusion, or swapping, has become a common strategy to improve properties of enzymes, especially glycosyl hydrolases. However, there are few reports explaining the mechanism of increased activity from a protein structure perspective. Amy703 is an alkaline amylase with a unique N-terminal domain. Prior studies have shown that N-Amy, a mutant without an N-terminal domain, exhibits improved activity, stability, and calcium ion independence. In this study, we have used X-ray crystallography to determine the crystal structure of N-Amy and used AlphaFold2 to model the Amy703 structure, respectively. We further used size exclusion chromatography to show that Amy703 existed as a monomer, whereas N-Amy formed a unique dimer. It was found that the N-terminus of one monomer of N-Amy was inserted into the catalytic domain of its symmetrical subunit, resulting in the expansion of the catalytic pocket. This also significantly increased the pKa of the hydrogen donor Glu350, thereby enhancing substrate binding affinity and contributing to increased N-Amy activity. Meanwhile, two calcium ions were found to bind to N-Amy at different binding sites, which also contributed to the stability of protein. Therefore, this study provided new structural insights into the mechanisms of various glycosyl hydrolases.


Asunto(s)
Calcio , Estabilidad de Enzimas , Multimerización de Proteína , Calcio/metabolismo , Calcio/química , Modelos Moleculares , Dominio Catalítico , Dominios Proteicos , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Cristalografía por Rayos X
5.
J Agric Food Chem ; 72(12): 6463-6470, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38501643

RESUMEN

Eugenol, the main component of essential oil from the Syzygium aromaticum clove tree, has great potential as an alternative bioresource feedstock for biosynthesis purposes. Although eugenol degradation to ferulic acid was investigated, an efficient method for directly converting eugenol to targeted natural products has not been established. Herein we identified the inherent inhibitions by simply combining the previously reported ferulic acid biosynthetic pathway and vanillin biosynthetic pathway. To overcome this, we developed a novel biosynthetic pathway for converting eugenol into vanillin, by introducing cinnamoyl-CoA reductase (CCR), which catalyzes conversion of coniferyl aldehyde to feruloyl-CoA. This approach bypasses the need for two catalysts, namely coniferyl aldehyde dehydrogenase and feruloyl-CoA synthetase, thereby eliminating inhibition while simplifying the pathway. To further improve efficiency, we enhanced CCR catalytic efficiency via directed evolution and leveraged an artificialvanillin biosensor for high-throughput screening. Switching the cofactor preference of CCR from NADP+ to NAD+ significantly improved pathway efficiency. This newly designed pathway provides an alternative strategy for efficiently biosynthesizing feruloyl-CoA-derived natural products using eugenol.


Asunto(s)
Acilcoenzima A , Benzaldehídos , Vías Biosintéticas , Ácidos Cumáricos , Eugenol , Eugenol/metabolismo
6.
Biotechnol Biofuels Bioprod ; 17(1): 93, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961423

RESUMEN

BACKGROUND: Polyketide synthases (PKSs) are classified into three types based on their enzyme structures. Among them, type III PKSs, catalyzing the iterative condensation of malonyl-coenzyme A (CoA) with a CoA-linked starter molecule, are important synthases of valuable natural products. However, low efficiency and byproducts formation often limit their applications in recombinant overproduction. RESULTS: Herein, a rapid growth selection system is designed based on the accumulation and derepression of toxic acyl-CoA starter molecule intermediate products, which could be potentially applicable to most type III polyketides biosynthesis. This approach is validated by engineering both chalcone synthases (CHS) and host cell genome, to improve naringenin productions in Escherichia coli. From directed evolution of key enzyme CHS, beneficial mutant with ~ threefold improvement in capability of naringenin biosynthesis was selected and characterized. From directed genome evolution, effect of thioesterases on CHS catalysis is first discovered, expanding our understanding of byproduct formation mechanism in type III PKSs. Taken together, a whole-cell catalyst producing 1082 mg L-1 naringenin in flask with E value (evaluating product specificity) improved from 50.1% to 96.7% is obtained. CONCLUSIONS: The growth selection system has greatly contributed to both enhanced activity and discovery of byproduct formation mechanism in CHS. This research provides new insights in the catalytic mechanisms of CHS and sheds light on engineering highly efficient heterologous bio-factories to produce naringenin, and potentially more high-value type III polyketides, with minimized byproducts formation.

7.
Enzyme Microb Technol ; 147: 109786, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33992408

RESUMEN

Xylanases degrade xylan to valuable end products. In our previous study, the alkaline xylanase S7-xyl from Bacillus halodurans S7 was engineered by rational design and the best mutant xylanase 254RL1 exhibited 3.4-fold improvements in specific activity at pH 9.0. Further research found that the enzyme activity at pH 6.0 was almost 2-fold than that at pH 9.0. To elucidate the reason of enhanced performance of 254RL1 at decreased pH optimum, we determined the X-ray crystal structure of 254RL1 at 2.21 Å resolution. The structural analysis revealed that the mutations enlarged the opening of the access tunnel and shortened the tunnel. Moreover, the mutations changed the hydrogen bond network around the catalytic residue and decreased the pKa value of acid-base catalyst E159 which reduced the pH optimum of the xylanase. The result provided the basis for the acid-alkaline engineering of the glycoside hydrolases.


Asunto(s)
Bacillus , Endo-1,4-beta Xilanasas , Bacillus/genética , Endo-1,4-beta Xilanasas/genética , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno
8.
Sheng Wu Gong Cheng Xue Bao ; 34(4): 489-500, 2018 Apr 25.
Artículo en Zh | MEDLINE | ID: mdl-29701023

RESUMEN

Zearalenone (ZEN) and its derivatives are non-steroidal estrogenic mycotoxins mainly produced by Fusarium species. They are widely distributed in grain feeds originated from maize, barley, wheat and sorghum, causing serious harm to animal and human health. Currently, there is a pressing need of an efficient technology for ZEN degradation and detoxification. Because traditional physical and chemical methods could not effectively detoxify ZEN in grains, and might also affect the grain nutrients and food taste, and even result in secondary pollution, the biological technologies are developed to detoxify ZEN and its derivatives. In this paper, we reviewed the structure of ZEN and its derivatives, the fungi and bacteria species with ability of degradation of ZEN. In addition, the characterization, protein sequences and conformation of currently identified ZEN degrading enzymes, the only solved ZHD structure from Clonostachys rose were analyzed and compared, and the enzymes heterologous expression and application were also reviewed. This review will provide reference for reducing the cost of ZEN degrading enzymes by biological technologies such as enzyme engineering and fermentation engineering.


Asunto(s)
Fusarium/química , Zearalenona/química , Grano Comestible/microbiología , Enzimas/química , Contaminación de Alimentos , Hypocreales/química , Micotoxinas
9.
Sheng Wu Gong Cheng Xue Bao ; 33(12): 2017-2027, 2017 Dec 25.
Artículo en Zh | MEDLINE | ID: mdl-29271179

RESUMEN

Pectate lyase is widely applied in ramie degumming and fabric bioscouring in the textile industry. Compared to conventional processes that involve high alkaline and high temperature treatment, enzyme based treatments have significant advantages in fibers protectiveness, improved efficiency of refining, reduced energy consumption and pollution. Hence, it would be highly desirable to construct high-yield alkaline pectate lyase engineered strains and reduce the pectate lyase production cost. In the previous study, pectate lyase gene pel from Bacillus subtilis168 was expressed in Pichia pastoris GS115 after codon usage optimization based on the vector pHBM905A. To improve the expression level, the vector pHBM905BDM with optimized promoter and signal peptide was used to express the optimized gene pels in GS115. The transformant had increased activity from 68 U/mL to 100 U/mL with the improvement in the transcription level by 27% measured by qPCR. The transformants were further screened on pectin plates, where higher halo forming strains were picked for shake-flask fermentation and strain GS115-pHBM905BDM-pels4 showed the highest activity of 536 U/mL. Then plasmid pPIC9K-pels was constructed and electroporated into the GS115-pHBM905BDM-pels4 cells. Subsequently, high-copy transformant was screened by using the medium containing antibiotics G418, strain GS115-pHBM905BDMpPIC9K- pels1 was identified with increased activity of 770 U/mL and the copy number of pels was 7 confirmed by qPCR. Finally, the activity of pectate lyase produced by GS115-pHBM905BDM-pPIC9K-pels1reached to 2 271 U/mL in a 5-L fermentor. The activity of pectate lyase in our study reached the highest level of expression in P. pastoris, showing good application potential in the textile industry.


Asunto(s)
Fermentación , Pichia/metabolismo , Polisacárido Liasas/biosíntesis , Bacillus subtilis/enzimología , Microbiología Industrial , Proteínas Recombinantes/biosíntesis
10.
Microbiol Res ; 193: 48-56, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27825486

RESUMEN

The mycotoxin zearalenone (ZEN) can be degraded by a lactone hydrolase ZHD, which was derived from Gliocladium roseum. Here, based on the native ZHD encoding gene zhd101, a codon optimized zhd gene was synthesized, which was used for high expression of ZHD in Pichia pastoris GS115. Meanwhile, to further improve the expression of recombinant ZHD, the plasmids containing 1 to 4 copies of the zhd expression cassette were constructed, respectively, using the biobrick method. The protein expression in the recombinant P. pastoris X3c, which was transformed with the plasmid containing 3 copies of zhd expression cassette, was the highest. In addition, the enzymatic activity of ZHD against ZEN was defined for the first time based on a standard curve of peak area vs ZEN concentration. The ZEN degradation activity of ZHD from shake flask fermentation was calculated as 22.5U/mL with the specific activity of 4976.5U/mg. Furthermore, the high-density fermentation of P. pastoris X3c strain was also performed in 5L fermenter. The maximum enzyme activity of the supernatant was 150.1U/mL, which were 6.7-fold higher than that of the shake flask fermentation.


Asunto(s)
Expresión Génica , Hidrolasas/metabolismo , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Zearalenona/antagonistas & inhibidores , Biotransformación , Codón , Dosificación de Gen , Vectores Genéticos , Hidrolasas/genética , Pichia/genética , Plásmidos , Proteínas Recombinantes/genética , Análisis de Secuencia de ADN , Zearalenona/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA