Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cell ; 187(11): 2652-2656, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38788688

RESUMEN

Mechanobiology-the field studying how cells produce, sense, and respond to mechanical forces-is pivotal in the analysis of how cells and tissues take shape in development and disease. As we venture into the future of this field, pioneers share their insights, shaping the trajectory of future research and applications.


Asunto(s)
Biofisica , Animales , Humanos , Fenómenos Biomecánicos , Forma de la Célula , Mecanotransducción Celular
2.
Cell ; 187(13): 3409-3426.e24, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38744281

RESUMEN

Alterations in extracellular matrix (ECM) architecture and stiffness represent hallmarks of cancer. Whether the biomechanical property of ECM impacts the functionality of tumor-reactive CD8+ T cells remains largely unknown. Here, we reveal that the transcription factor (TF) Osr2 integrates biomechanical signaling and facilitates the terminal exhaustion of tumor-reactive CD8+ T cells. Osr2 expression is selectively induced in the terminally exhausted tumor-specific CD8+ T cell subset by coupled T cell receptor (TCR) signaling and biomechanical stress mediated by the Piezo1/calcium/CREB axis. Consistently, depletion of Osr2 alleviates the exhaustion of tumor-specific CD8+ T cells or CAR-T cells, whereas forced Osr2 expression aggravates their exhaustion in solid tumor models. Mechanistically, Osr2 recruits HDAC3 to rewire the epigenetic program for suppressing cytotoxic gene expression and promoting CD8+ T cell exhaustion. Thus, our results unravel Osr2 functions as a biomechanical checkpoint to exacerbate CD8+ T cell exhaustion and could be targeted to potentiate cancer immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Factores de Transcripción , Animales , Femenino , Humanos , Ratones , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Matriz Extracelular/metabolismo , Histona Desacetilasas/metabolismo , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Agotamiento de Células T , Factores de Transcripción/metabolismo , Microambiente Tumoral , Estrés Mecánico
3.
Nature ; 604(7905): 377-383, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35388220

RESUMEN

PIEZO channels respond to piconewton-scale forces to mediate critical physiological and pathophysiological processes1-5. Detergent-solubilized PIEZO channels form bowl-shaped trimers comprising a central ion-conducting pore with an extracellular cap and three curved and non-planar blades with intracellular beams6-10, which may undergo force-induced deformation within lipid membranes11. However, the structures and mechanisms underlying the gating dynamics of PIEZO channels in lipid membranes remain unresolved. Here we determine the curved and flattened structures of PIEZO1 reconstituted in liposome vesicles, directly visualizing the substantial deformability of the PIEZO1-lipid bilayer system and an in-plane areal expansion of approximately 300 nm2 in the flattened structure. The curved structure of PIEZO1 resembles the structure determined from detergent micelles, but has numerous bound phospholipids. By contrast, the flattened structure exhibits membrane tension-induced flattening of the blade, bending of the beam and detaching and rotating of the cap, which could collectively lead to gating of the ion-conducting pathway. On the basis of the measured in-plane membrane area expansion and stiffness constant of PIEZO1 (ref. 11), we calculate a half maximal activation tension of about 1.9 pN nm-1, matching experimentally measured values. Thus, our studies provide a fundamental understanding of how the notable deformability and structural rearrangement of PIEZO1 achieve exquisite mechanosensitivity and unique curvature-based gating in lipid membranes.


Asunto(s)
Activación del Canal Iónico , Canales Iónicos , Mecanotransducción Celular , Detergentes , Canales Iónicos/metabolismo , Membrana Dobles de Lípidos , Micelas
4.
Trends Biochem Sci ; 46(6): 472-488, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33610426

RESUMEN

The evolutionarily conserved Piezo channel family, including Piezo1 and Piezo2 in mammals, serves as versatile mechanotransducers in various cell types and consequently governs fundamental pathophysiological processes ranging from vascular development to the sense of gentle touch and tactile pain. Piezo1/2 possess a unique 38-transmembrane (TM) helix topology and form a homotrimeric propeller-shaped structure comprising a central ion-conducting pore and three peripheral mechanosensing blades. The unusually curved TM region of the three blades shapes a signature nano-bowl configuration with potential to generate large in-plane membrane area expansion, which might confer exquisite mechanosensitivity to Piezo channels. Here, we review the current understanding of Piezo channels with a particular focus on their unique structural designs and elegant mechanogating mechanisms.


Asunto(s)
Activación del Canal Iónico , Canales Iónicos , Animales , Canales Iónicos/metabolismo , Mecanotransducción Celular , Dominios Proteicos
5.
Nature ; 573(7773): 225-229, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31435011

RESUMEN

PIEZO2 is a mechanosensitive cation channel that has a key role in sensing touch, tactile pain, breathing and blood pressure. Here we describe the cryo-electron microscopy structure of mouse PIEZO2, which is a three-bladed, propeller-like trimer that comprises 114 transmembrane helices (38 per protomer). Transmembrane helices 1-36 (TM1-36) are folded into nine tandem units of four transmembrane helices each to form the unusual non-planar blades. The three blades are collectively curved into a nano-dome of 28-nm diameter and 10-nm depth, with an extracellular cap-like structure embedded in the centre and a 9-nm-long intracellular beam connecting to the central pore. TM38 and the C-terminal domain are surrounded by the anchor domain and TM37, and enclose the central pore with both transmembrane and cytoplasmic constriction sites. Structural comparison between PIEZO2 and its homologue PIEZO1 reveals that the transmembrane constriction site might act as a transmembrane gate that is controlled by the cap domain. Together, our studies provide insights into the structure and mechanogating mechanism of Piezo channels.


Asunto(s)
Microscopía por Crioelectrón , Canales Iónicos/metabolismo , Canales Iónicos/ultraestructura , Secuencia de Aminoácidos , Animales , Canales Iónicos/química , Transporte Iónico , Ratones , Modelos Moleculares , Dominios Proteicos
6.
Nature ; 563(7730): E19, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30202093

RESUMEN

In Extended Data Fig. 9a of this Article, the bottom micrographs of mPiezo1-ΔL3-4-IRES-GFP and mPiezo1-ΔL7-8-IRES-GFP (labelled 'permeabilized') are inadvertently the same images. The corrected figure panels are shown in the accompanying Amendment.

7.
Nature ; 554(7693): 487-492, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29469092

RESUMEN

The mechanosensitive Piezo channels function as key eukaryotic mechanotransducers. However, their structures and mechanogating mechanisms remain unknown. Here we determine the three-bladed, propeller-like electron cryo-microscopy structure of mouse Piezo1 and functionally reveal its mechanotransduction components. Despite the lack of sequence repetition, we identify nine repetitive units consisting of four transmembrane helices each-which we term transmembrane helical units (THUs)-which assemble into a highly curved blade-like structure. The last transmembrane helix encloses a hydrophobic pore, followed by three intracellular fenestration sites and side portals that contain pore-property-determining residues. The central region forms a 90 Å-long intracellular beam-like structure, which undergoes a lever-like motion to connect THUs to the pore via the interfaces of the C-terminal domain, the anchor-resembling domain and the outer helix. Deleting extracellular loops in the distal THUs or mutating single residues in the beam impairs the mechanical activation of Piezo1. Overall, Piezo1 possesses a unique 38-transmembrane-helix topology and designated mechanotransduction components, which enable a lever-like mechanogating mechanism.


Asunto(s)
Microscopía por Crioelectrón , Activación del Canal Iónico , Canales Iónicos/metabolismo , Canales Iónicos/ultraestructura , Mecanotransducción Celular , Animales , Canales Iónicos/química , Ratones , Modelos Moleculares , Movimiento , Relación Estructura-Actividad
8.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34244441

RESUMEN

Ultrasonic hearing and vocalization are the physiological mechanisms controlling echolocation used in hunting and navigation by microbats and bottleneck dolphins and for social communication by mice and rats. The molecular and cellular basis for ultrasonic hearing is as yet unknown. Here, we show that knockout of the mechanosensitive ion channel PIEZO2 in cochlea disrupts ultrasonic- but not low-frequency hearing in mice, as shown by audiometry and acoustically associative freezing behavior. Deletion of Piezo2 in outer hair cells (OHCs) specifically abolishes associative learning in mice during hearing exposure at ultrasonic frequencies. Ex vivo cochlear Ca2+ imaging has revealed that ultrasonic transduction requires both PIEZO2 and the hair-cell mechanotransduction channel. The present study demonstrates that OHCs serve as effector cells, combining with PIEZO2 as an essential molecule for ultrasonic hearing in mice.


Asunto(s)
Células Ciliadas Auditivas Externas/metabolismo , Audición/fisiología , Canales Iónicos/metabolismo , Ultrasonido , Animales , Calcio/metabolismo , Reacción Cataléptica de Congelación , Eliminación de Gen , Células HEK293 , Humanos , Mecanotransducción Celular , Ratones Noqueados
9.
Glia ; 71(5): 1233-1246, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36598105

RESUMEN

Optic nerve head (ONH) astrocytes provide structural and metabolic support to neuronal axons in developmental, physiological, and pathological progression. Mechanosensitive properties of astrocytes allow them to sense and respond to mechanical cues from the local environment. We confirmed that ONH astrocytes express the mechanosensitive ion channel Piezo1 in vivo. By manipulating Piezo1 knockdown or overexpression in vitro, we found that Piezo1 is necessary but insufficient for ONH astrocyte proliferation. Loss of Piezo1 can lead to cell cycle arrest at G0/G1 phase, a possible mechanism involving decreased yes-associated protein (YAP) nuclear localization and downregulation of YAP-target cell cycle-associated factors, including cyclin D1 and c-Myc. Gene ontology enrichment analysis of differential expression genes from RNA-seq data indicates that the absence of Piezo1 affects biological processes involving cell division. Our results demonstrate that Piezo1 is an essential regulator in cell cycle progression in ONH astrocytes.


Asunto(s)
Disco Óptico , Disco Óptico/metabolismo , Disco Óptico/patología , Astrocitos/metabolismo , División Celular , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ciclo Celular/genética
10.
Annu Rev Pharmacol Toxicol ; 60: 195-218, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31454291

RESUMEN

The mechanically activated Piezo channels, including Piezo1 and Piezo2 in mammals, function as key mechanotransducers for converting mechanical force into electrochemical signals. This review highlights key evidence for the potential of Piezo channel drug discovery. First, both mouse and human genetic studies have unequivocally demonstrated the prominent role of Piezo channels in various mammalian physiologies and pathophysiologies, validating their potential as novel therapeutic targets. Second, the cryo-electron microscopy structure of the 2,547-residue mouse Piezo1 trimer has been determined, providing a solid foundation for studying its structure-function relationship and drug action mechanisms and conducting virtual drug screening. Third, Piezo1 chemical activators, named Yoda1 and Jedi1/2, have been identified through high-throughput screening assays, demonstrating the drugability of Piezo channels. However, the pharmacology of Piezo channels is in its infancy. By establishing an integrated drug discovery platform, we may hopefully discover and develop a fleet of Jedi masters for battling Piezo-related human diseases.


Asunto(s)
Descubrimiento de Drogas , Canales Iónicos/efectos de los fármacos , Animales , Microscopía por Crioelectrón , Ensayos Analíticos de Alto Rendimiento , Humanos , Canales Iónicos/metabolismo , Ratones
11.
Proc Natl Acad Sci U S A ; 117(20): 10832-10838, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32358190

RESUMEN

While the concept of intercellular mechanical communication has been revealed, the mechanistic insights have been poorly evidenced in the context of myofibroblast-fibroblast interaction during fibrosis expansion. Here we report and systematically investigate the mechanical force-mediated myofibroblast-fibroblast cross talk via the fibrous matrix, which we termed paratensile signaling. Paratensile signaling enables instantaneous and long-range mechanotransduction via collagen fibers (less than 1 s over 70 µm) to activate a single fibroblast, which is intracellularly mediated by DDR2 and integrin signaling pathways in a calcium-dependent manner through the mechanosensitive Piezo1 ion channel. By correlating in vitro fibroblast foci growth models with mathematical modeling, we demonstrate that the single-cell-level spatiotemporal feature of paratensile signaling can be applied to elucidate the tissue-level fibrosis expansion and that blocking paratensile signaling can effectively attenuate the fibroblast to myofibroblast transition at the border of fibrotic and normal tissue. Our comprehensive investigation of paratensile signaling in fibrosis expansion broadens the understanding of cellular dynamics during fibrogenesis and inspires antifibrotic intervention strategies targeting paratensile signaling.


Asunto(s)
Fibroblastos/metabolismo , Fibrosis/metabolismo , Miofibroblastos/metabolismo , Transducción de Señal/fisiología , Animales , Receptor con Dominio Discoidina 2/metabolismo , Humanos , Integrinas , Canales Iónicos/metabolismo , Mecanotransducción Celular
12.
Nature ; 527(7576): 64-9, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26390154

RESUMEN

Piezo proteins are evolutionarily conserved and functionally diverse mechanosensitive cation channels. However, the overall structural architecture and gating mechanisms of Piezo channels have remained unknown. Here we determine the cryo-electron microscopy structure of the full-length (2,547 amino acids) mouse Piezo1 (Piezo1) at a resolution of 4.8 Å. Piezo1 forms a trimeric propeller-like structure (about 900 kilodalton), with the extracellular domains resembling three distal blades and a central cap. The transmembrane region has 14 apparently resolved segments per subunit. These segments form three peripheral wings and a central pore module that encloses a potential ion-conducting pore. The rather flexible extracellular blade domains are connected to the central intracellular domain by three long beam-like structures. This trimeric architecture suggests that Piezo1 may use its peripheral regions as force sensors to gate the central ion-conducting pore.


Asunto(s)
Microscopía por Crioelectrón , Canales Iónicos/química , Canales Iónicos/ultraestructura , Animales , Membrana Celular/metabolismo , Conductividad Eléctrica , Activación del Canal Iónico , Canales Iónicos/metabolismo , Ratones , Modelos Moleculares , Docilidad , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
13.
J Physiol ; 596(6): 969-978, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29171028

RESUMEN

The evolutionarily conserved Piezo family of proteins, including Piezo1 and Piezo2, encodes the long-sought-after mammalian mechanosensitive cation channels that play critical roles in various mechanotransduction processes such as touch, pain, proprioception, vascular development and blood pressure regulation. Mammalian Piezo proteins contain over 2500 amino acids with numerous predicted transmembrane segments, and do not bear sequence homology with any known class of ion channels. Thus, it is imperative, but challenging, to understand how they serve as effective mechanotransducers for converting mechanical force into electrochemical signals. Here, we review the recent major breakthroughs in determining the three-bladed, propeller-shaped structure of mouse Piezo1 using the state-of-the-art cryo-electron microscopy (cryo-EM) and functionally dissecting out the molecular bases that define its ion permeation and mechanotransduction properties, which provide key insights into clarifying its oligomeric status and pore-forming region. We also discuss the hypothesis that the complex Piezo proteins can be deduced into discrete mechanotransduction and ion-conducting pore modules, which coordinate to fulfil their specialized function in mechanical sensing and transduction, ion permeation and selection.


Asunto(s)
Calcio/metabolismo , Activación del Canal Iónico , Canales Iónicos/metabolismo , Mecanotransducción Celular , Humanos , Modelos Moleculares
14.
Nature ; 483(7388): 176-81, 2012 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-22343900

RESUMEN

Mechanotransduction has an important role in physiology. Biological processes including sensing touch and sound waves require as-yet-unidentified cation channels that detect pressure. Mouse Piezo1 (MmPiezo1) and MmPiezo2 (also called Fam38a and Fam38b, respectively) induce mechanically activated cationic currents in cells; however, it is unknown whether Piezo proteins are pore-forming ion channels or modulate ion channels. Here we show that Drosophila melanogaster Piezo (DmPiezo, also called CG8486) also induces mechanically activated currents in cells, but through channels with remarkably distinct pore properties including sensitivity to the pore blocker ruthenium red and single channel conductances. MmPiezo1 assembles as a ∼1.2-million-dalton homo-oligomer, with no evidence of other proteins in this complex. Purified MmPiezo1 reconstituted into asymmetric lipid bilayers and liposomes forms ruthenium-red-sensitive ion channels. These data demonstrate that Piezo proteins are an evolutionarily conserved ion channel family involved in mechanotransduction.


Asunto(s)
Activación del Canal Iónico , Canales Iónicos/química , Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Conductividad Eléctrica , Células HEK293 , Células HeLa , Humanos , Canales Iónicos/genética , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , Porosidad , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
15.
J Pept Sci ; 22(5): 320-6, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26991634

RESUMEN

Mambalgins are a class of 57-residue polypeptide toxins isolated from the venom of the African mamba. They exhibit potent analgesic effects by inhibiting the acid-sensing ion channels. Classified as members of the family of three-finger toxins, mambalgins contain four pairs of disulfide bridges that help to stabilize the three-finger scaffold. Here, we report the chemical synthesis of functional mambalgin-1/2/3 by using one-step two-segment hydrazide-based native chemical ligation. The two-segment ligation approach reported here may enable efficient production of mambalgin toxins. These synthetic mambalgins are useful compounds for development of diagnostic or therapeutic reagents. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Asunto(s)
Venenos Elapídicos/síntesis química , Péptidos/síntesis química , Azidas/química , Disulfuros/química , Venenos Elapídicos/química , Modelos Moleculares , Estructura Molecular , Péptidos/química
17.
Nat Chem Biol ; 7(6): 351-8, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21499266

RESUMEN

Intracellular Ca(2+) is essential for diverse cellular functions. Ca(2+) entry into many cell types including immune cells is triggered by depleting endoplasmic reticulum (ER) Ca(2+), a process termed store-operated Ca(2+) entry (SOCE). STIM1 is an ER Ca(2+) sensor. Upon Ca(2+) store depletion, STIM1 clusters at ER-plasma membrane junctions where it interacts with and gates Ca(2+)-permeable Orai1 ion channels. Here we show that STIM1 is also activated by temperature. Heating cells caused clustering of STIM1 at temperatures above 35 °C without depleting Ca(2+) stores and led to Orai1-mediated Ca(2+) influx as a heat off-response (response after cooling). Notably, the functional coupling of STIM1 and Orai1 is prevented at high temperatures, potentially explaining the heat off-response. Additionally, physiologically relevant temperature shifts modulate STIM1-dependent gene expression in Jurkat T cells. Therefore, temperature is an important regulator of STIM1 function.


Asunto(s)
Calcio/metabolismo , Regulación de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Temperatura , Canales de Calcio/metabolismo , Retículo Endoplásmico , Calor , Humanos , Células Jurkat , Proteína ORAI1 , Molécula de Interacción Estromal 1
18.
Cell Res ; 33(7): 497-515, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37142673

RESUMEN

Although anion channel activities have been demonstrated in sarcoplasmic reticulum/endoplasmic reticulum (SR/ER), their molecular identities and functions remain unclear. Here, we link rare variants of Chloride Channel CLIC Like 1 (CLCC1) to amyotrophic lateral sclerosis (ALS)-like pathologies. We demonstrate that CLCC1 is a pore-forming component of an ER anion channel and that ALS-associated mutations impair channel conductance. CLCC1 forms homomultimers and its channel activity is inhibited by luminal Ca2+ but facilitated by phosphatidylinositol 4,5-bisphosphate (PIP2). We identified conserved residues D25 and D181 in CLCC1 N-terminus responsible for Ca2+ binding and luminal Ca2+-mediated inhibition on channel open probability and K298 in CLCC1 intraluminal loop as the critical PIP2-sensing residue. CLCC1 maintains steady-state [Cl-]ER and [K+]ER and ER morphology and regulates ER Ca2+ homeostasis, including internal Ca2+ release and steady-state [Ca2+]ER. ALS-associated mutant forms of CLCC1 increase steady-state [Cl-]ER and impair ER Ca2+ homeostasis, and animals with the ALS-associated mutations are sensitized to stress challenge-induced protein misfolding. Phenotypic comparisons of multiple Clcc1 loss-of-function alleles, including ALS-associated mutations, reveal a CLCC1 dosage dependence in the severity of disease phenotypes in vivo. Similar to CLCC1 rare variations dominant in ALS, 10% of K298A heterozygous mice developed ALS-like symptoms, pointing to a mechanism of channelopathy dominant-negatively induced by a loss-of-function mutation. Conditional knockout of Clcc1 cell-autonomously causes motor neuron loss and ER stress, misfolded protein accumulation, and characteristic ALS pathologies in the spinal cord. Thus, our findings support that disruption of ER ion homeostasis maintained by CLCC1 contributes to ALS-like pathologies.


Asunto(s)
Esclerosis Amiotrófica Lateral , Animales , Ratones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Transporte Biológico , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Retículo Endoplásmico/metabolismo , Homeostasis , Proteínas Mitocondriales/metabolismo , Mutación/genética
19.
Cell Rep ; 38(6): 110342, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35139384

RESUMEN

The mechanically activated Piezo channel plays a versatile role in conferring mechanosensitivity to various cell types. However, how it incorporates its intrinsic mechanosensitivity and cellular components to effectively sense long-range mechanical perturbation across a cell remains elusive. Here we show that Piezo channels are biochemically and functionally tethered to the actin cytoskeleton via the cadherin-ß-catenin mechanotransduction complex, whose perturbation significantly impairs Piezo-mediated responses. Mechanistically, the adhesive extracellular domain of E-cadherin interacts with the cap domain of Piezo1, which controls the transmembrane gate, while its cytosolic tail might interact with the cytosolic domains of Piezo1, which are in close proximity to its intracellular gates, allowing a direct focus of adhesion-cytoskeleton-transmitted force for gating. Specific disruption of the intermolecular interactions prevents cytoskeleton-dependent gating of Piezo1. Thus, we propose a force-from-filament model to complement the previously suggested force-from-lipids model for mechanogating of Piezo channels, enabling them to serve as versatile and tunable mechanotransducers.


Asunto(s)
Citoesqueleto de Actina/inmunología , Citoesqueleto/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular/inmunología , beta Catenina/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Cadherinas/inmunología , Cadherinas/metabolismo , Humanos , Activación del Canal Iónico , Ratones , beta Catenina/inmunología
20.
Neuron ; 110(18): 2984-2999.e8, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35963237

RESUMEN

Adult brain activities are generally believed to be dominated by chemical and electrical transduction mechanisms. However, the importance of mechanotransduction mediated by mechano-gated ion channels in brain functions is less appreciated. Here, we show that the mechano-gated Piezo1 channel is expressed in the exploratory processes of astrocytes and utilizes its mechanosensitivity to mediate mechanically evoked Ca2+ responses and ATP release, establishing Piezo1-mediated mechano-chemo transduction in astrocytes. Piezo1 deletion in astrocytes causes a striking reduction of hippocampal volume and brain weight and severely impaired (but ATP-rescuable) adult neurogenesis in vivo, and it abolishes ATP-dependent potentiation of neural stem cell (NSC) proliferation in vitro. Piezo1-deficient mice show impaired hippocampal long-term potentiation (LTP) and learning and memory behaviors. By contrast, overexpression of Piezo1 in astrocytes sufficiently enhances mechanotransduction, LTP, and learning and memory performance. Thus, astrocytes utilize Piezo1-mediated mechanotransduction mechanisms to robustly regulate adult neurogenesis and cognitive functions, conceptually highlighting the importance of mechanotransduction in brain structure and function.


Asunto(s)
Astrocitos , Mecanotransducción Celular , Adenosina Trifosfato , Animales , Astrocitos/metabolismo , Cognición , Canales Iónicos/genética , Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Ratones , Neurogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA