Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Contam Hydrol ; 264: 104358, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38692144

RESUMEN

The water quality evolution of surface and groundwater caused by mining activities and mine drainage is a grave public concern worldwide. To explore the effect of mine drainage on sulfate evolution, a multi-aquifer system in a typical coal mine in Northwest China was investigated using multi-isotopes (δ34SSO4, δ18OSO4, δD, and δ18Owater) and Positive Matrix Factorization (PMF) model. Before mining, the Jurassic aquifer was dominated by gypsum dissolution, accompanied by cation exchange and bacterial sulfate reduction, and the phreatic aquifers and surface water were dominated by carbonate dissolution. Significant increase in sulfate in phreatic aquifers due to mine drainage during the early stages of coal mining. However, in contrast to common mining activities that result in sulfate contamination from pyrite oxidation, mine drainage in this mining area resulted in accelerated groundwater flow and enhanced hydraulic connections between the phreatic and confined aquifers. Dilution caused by the altered groundwater flow system controlled the evolution of sulphate, leading to different degrees of sulfate decrease in all aquifers and surface water. As the hydrogeochemical characteristic of Jurassic aquifer evolved toward phreatic aquifer, this factor should be considered to avoid misjudgment in determining the source of mine water intrusion. The study reveals the hydrogeochemical evolution induced by mine drainage, which could benefit to the management of groundwater resources in mining areas.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Sulfatos , Contaminantes Químicos del Agua , Agua Subterránea/química , Sulfatos/análisis , Contaminantes Químicos del Agua/análisis , China , Minas de Carbón , Movimientos del Agua , Minería
2.
Sci Total Environ ; 854: 158812, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36115404

RESUMEN

The spatial distribution of mine water quality and geochemical controls must be investigated for water safety and ecosystem protection in Shaanxi-Inner Mongolian Coal Mine Base (SICMB). Based on 122 mine water samples collected from 14 mining areas, self-organizing maps (SOM) combining with principal component analysis (PCA) derived that the mine water samples were classified into seven clusters. Clusters 1 and 3 (C1 and C3) samples were dominant by HCO3-Ca and mixed types, which were distributed in the recharge area of the middle SICMB. In this area, the active groundwater circulation contributed to the good water quality. Cluster 2 (C2) samples were characterized by HCO3-Na type, mainly distributed in the discharge area of the middle SICMB. These samples were threatened by heavy fluorine contamination and high residual sodium carbonate (RSC) because of slow groundwater flow in this area. Clusters 4 and 5 (C4 and C5) samples, distributed in the northeast and middle SICMB, were characterized by high Cl- concentration and light fluorine contamination. They were influenced by anthropogenic input through faults or underground mining. In contrast, Clusters 6 and 7 (C6 and C7) samples with high salinity and sulfate were distributed in the southwest SICMB. The deep groundwater circulation enhanced water-rock interaction and contributed to poor water quality. These findings are beneficial to the management of mine water resources in the SICMB and provide an insight to investigate the mine water quality in large spatial scale.

3.
Environ Sci Pollut Res Int ; 29(53): 80581-80596, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35718848

RESUMEN

Excessive iron and manganese presented in groundwater sources may cause harm to human health that needs to be solved urgently. This research aims to develop high-performance Mn/Ti-modified zeolites using sol-gel method and hydrothermal synthesis method to remove Fe2+ and Mn2+ simultaneously. The preparation parameters were optimized by response surface methodology, and the results confirmed that the optimal preparation conditions were as follows: mass ratio of MnO2-TiO2/zeolite = 1, hydrothermal temperature = 200°C, and calcination temperature = 500°C. The results of batch adsorption experiments showed that the best removal rate of Fe2+ and Mn2+ by modified zeolite materials which was prepared under the optimum conditions reached 96.8% and 94.4%, respectively, at which the saturated adsorption capacity was 2.80 mg/g and 1.86 mg/g. Through the adsorption kinetics, thermodynamics, internal diffusion, and isothermal adsorption analyses, it is confirmed that the adsorption process of Fe2+ and Mn2+ by the modified zeolite is mainly chemical adsorption. The results of the Weber-Morris internal diffusion model prove that internal diffusion is not the only step that controls the adsorption process. In addition, combined with the characterization of the composite-modified zeolite and the adsorption experimental study, it shows that there is an autocatalytic reaction in the adsorption process.


Asunto(s)
Contaminantes Químicos del Agua , Zeolitas , Humanos , Zeolitas/química , Manganeso/análisis , Hierro/análisis , Compuestos de Manganeso/química , Óxidos/química , Titanio/análisis , Adsorción , Cinética , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA