Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.141
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cell ; 187(13): 3319-3337.e18, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38810645

RESUMEN

The development of perennial crops holds great promise for sustainable agriculture and food security. However, the evolution of the transition between perenniality and annuality is poorly understood. Here, using two Brassicaceae species, Crucihimalaya himalaica and Erysimum nevadense, as polycarpic perennial models, we reveal that the transition from polycarpic perennial to biennial and annual flowering behavior is a continuum determined by the dosage of three closely related MADS-box genes. Diversification of the expression patterns, functional strengths, and combinations of these genes endows species with the potential to adopt various life-history strategies. Remarkably, we find that a single gene among these three is sufficient to convert winter-annual or annual Brassicaceae plants into polycarpic perennial flowering plants. Our work delineates a genetic basis for the evolution of diverse life-history strategies in plants and lays the groundwork for the generation of diverse perennial Brassicaceae crops in the future.


Asunto(s)
Brassicaceae , Flores , Regulación de la Expresión Génica de las Plantas , Brassicaceae/genética , Brassicaceae/fisiología , Productos Agrícolas/genética , Flores/genética , Flores/fisiología , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Fenómenos Fisiológicos de las Plantas , Mapeo Cromosómico , Mutación
2.
J Virol ; : e0053524, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158273

RESUMEN

Coronaviruses (CoVs) are important pathogens for humans and other vertebrates, causing severe respiratory and intestinal infections that have become a threat to public health because of the potential for interspecies transmission between animals and humans. Therefore, the development of safe, effective vaccines remains a top priority for the control of CoV infection. The unique immunological characteristics of vaccines featuring messenger RNA (mRNA) present an advantageous tool for coronavirus vaccine development. Here, we designed two lipid nanoparticle (LNP)-encapsulated mRNA (mRNA-LNP) vaccines: one encoding full-length spike (S) protein and the other encoding the spike ectodomain (Se) from porcine deltacoronavirus (PDCoV). Fourteen days after primary immunization, both mRNA vaccines induced high levels of immunoglobulin G and neutralizing antibodies in mice, with the S vaccine showing better performance than the Se vaccine. Passive immune protection of the S mRNA vaccine in suckling piglets was confirmed by the induction of robust PDCoV-specific humoral and cellular immune responses. The S mRNA vaccine also showed better protective effects than the inactivated vaccine. Our results suggest that the novel PDCoV-S mRNA-LNP vaccine may have the potential to combat PDCoV infection. IMPORTANCE: As an emerging porcine enteropathogenic coronavirus, porcine deltacoronavirus (PDCoV) has the potential for cross-species transmission, attracting extensive attention. Messenger RNA (mRNA) vaccines are a promising option for combating emerging and re-emerging infectious diseases, as evidenced by the demonstrated efficacy of the COVID-19 mRNA vaccine. Here, we first demonstrated that PDCoV-S mRNA-lipid nanoparticle (LNP) vaccines could induce potent humoral and cellular immune responses in mice. An evaluation of passive immune protection of S mRNA vaccines in suckling piglets confirmed that the protective effect of mRNA vaccine was better than that of inactivated vaccine. This study suggests that the PDCoV-S mRNA-LNP vaccine may serve as a potential and novel vaccine candidate for combating PDCoV infection.

3.
Am J Pathol ; 194(8): 1538-1549, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38762117

RESUMEN

The evaluation of morphologic features, such as inflammation, gastric atrophy, and intestinal metaplasia, is crucial for diagnosing gastritis. However, artificial intelligence analysis for nontumor diseases like gastritis is limited. Previous deep learning models have omitted important morphologic indicators and cannot simultaneously diagnose gastritis indicators or provide interpretable labels. To address this, an attention-based multi-instance multilabel learning network (AMMNet) was developed to simultaneously achieve the multilabel diagnosis of activity, atrophy, and intestinal metaplasia with only slide-level weak labels. To evaluate AMMNet's real-world performance, a diagnostic test was designed to observe improvements in junior pathologists' diagnostic accuracy and efficiency with and without AMMNet assistance. In this study of 1096 patients from seven independent medical centers, AMMNet performed well in assessing activity [area under the curve (AUC), 0.93], atrophy (AUC, 0.97), and intestinal metaplasia (AUC, 0.93). The false-negative rates of these indicators were only 0.04, 0.08, and 0.18, respectively, and junior pathologists had lower false-negative rates with model assistance (0.15 versus 0.10). Furthermore, AMMNet reduced the time required per whole slide image from 5.46 to 2.85 minutes, enhancing diagnostic efficiency. In block-level clustering analysis, AMMNet effectively visualized task-related patches within whole slide images, improving interpretability. These findings highlight AMMNet's effectiveness in accurately evaluating gastritis morphologic indicators on multicenter data sets. Using multi-instance multilabel learning strategies to support routine diagnostic pathology deserves further evaluation.


Asunto(s)
Aprendizaje Profundo , Gastritis , Humanos , Gastritis/diagnóstico , Gastritis/patología , Masculino , Femenino , Persona de Mediana Edad , Metaplasia/patología , Metaplasia/diagnóstico , Interpretación de Imagen Asistida por Computador/métodos , Anciano , Adulto
4.
Plant Physiol ; 195(2): 1069-1088, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38330431

RESUMEN

Powdery mildew (PM) is one of the most widespread and prevalent diseases that affects a wide range of crops. In cucumber (Cucumis sativus L.), previous forward genetic studies have identified MILDEW RESISTANCE LOCUS O 8 (CsMLO8) as necessary but alone insufficient for cucumber PM resistance (PMR) and suggested the involvement of other members of the CsMLO family. However, the function of other CsMLO family members in cucumber remains largely unknown. Here, we developed a highly efficient multiplex gene editing system in cucumber to generate a series of Csmlo mutants from all the 13 family members. Systematic analysis of these mutants revealed growth effects of these CsMLO family members on development and PMR. Importantly, we obtained the Csmlo1/8/11 triple mutant with complete resistance to PM. Transcriptome and proteome analysis of PM-resistant Csmlo mutants suggested that the kinesin-like calmodulin-binding protein (KCBP)-interacting Ca2+-binding protein (CsKIC), calmodulin-like protein 28 (CsCML28), and Ca2+-dependent protein kinase 11 (CsCPK11)-mediated calcium signaling pathway is involved in PMR. CsMLO8 interacted directly with CsKIC, and the simultaneous silencing of both genes resulted in a phenotype that resembled the silencing of CsKIC alone. Silencing CsCML28 and CsCPK11 increased susceptibility to PM, whereas overexpressing CsCPK11 through genetic transformation enhanced cucumber's PMR, demonstrating their positive regulatory roles in PMR. Given the importance of PMR for cucurbit crops, this research provides unprecedented insights into the function of the proteins encoded by the CsMLO gene family as well as the plant defense response to PM pathogen.


Asunto(s)
Cucumis sativus , Resistencia a la Enfermedad , Edición Génica , Enfermedades de las Plantas , Cucumis sativus/genética , Cucumis sativus/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Edición Génica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ascomicetos/fisiología , Ascomicetos/patogenicidad , Mutación/genética , Regulación de la Expresión Génica de las Plantas
5.
Ann Neurol ; 95(5): 901-906, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38400794

RESUMEN

We determined the genetic association between specific human leucocyte antigen (HLA) loci and autoimmune glial fibrillary acidic protein (GFAP) astrocytopathy. Our results showed that autoimmune GFAP astrocytopathy was associated with HLA-A*3303 (odds ratio [OR] = 2.02, 95% confidence interval [CI] = 1.32-3.06, p = 0.00072, padj. = 0.046) and HLA-DBP1*0501 (OR = 0.51, 95% CI = 0.36-0.71, p = 0.000048, padj. = 0.0062). Moreover, HLA-A*3303 carriers with the disease had a longer hospital stay (p = 0.0005) than non-carriers. This study for the first time provides evidence for a role of genetic factor in the development of autoimmune GFAP astrocytopathy. ANN NEUROL 2024;95:901-906.


Asunto(s)
Astrocitos , Proteína Ácida Fibrilar de la Glía , Antígenos HLA-A , Cadenas beta de HLA-DP , Humanos , Proteína Ácida Fibrilar de la Glía/genética , Masculino , Femenino , Persona de Mediana Edad , Cadenas beta de HLA-DP/genética , Adulto , Antígenos HLA-A/genética , Astrocitos/metabolismo , Astrocitos/patología , Anciano
6.
FASEB J ; 38(2): e23387, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38193649

RESUMEN

Human brain microvascular endothelial cells (HBMVECs) and microglia play critical roles in regulating cerebral homeostasis during ischemic stroke. However, the role of HBMVECs-derived exosomes in microglia polarization after stroke remains unknown. We isolated exosomes (Exos) from oxygen glucose deprivation (OGD)-exposed HBMVECs, before added them into microglia. Microglia polarization markers were tested using RT-qPCR or flow cytometry. Inflammatory cytokines were measured with ELISA. Endothelial cell damage was assessed by cell viability, apoptosis, apoptosis-related proteins, oxidative stress, and angiogenic activity using CCK-8, flow cytometry, western blot, ELISA, and endothelial tube formation assay, respectively. We also established middle cerebral artery occlusion (MCAO) mice model to examine the function of circ_0000495 on stroke in vivo. Our study found that HBMVECs-Exos reduced M2 markers (IL-10, CD163, and CD206), increased M1 markers (TNF-α, IL-1ß, and IL-12), CD86-positive cells, and inflammatory cytokines (TNF-α and IL-1ß), indicating the promotion of microglial M1-polarization. Microglial M1-polarization induced by HBMVECs-Exos reduced viability and promoted apoptosis and oxidative stress, revealing the aggravation of endothelial cell damage. However, circ_0000495 silencing inhibited HBMVECs-Exos-induced alterations. Mechanistically, circ_0000495 adsorbed miR-579-3p to upregulate toll-like receptor 4 (TLR4) in microglia; miR-579-3p suppressed HBMVECs-Exos-induced alterations via declining TLR4; furthermore, Yin Yang 1 (YY1) transcriptionally activated circ_0000495 in HBMVECs. Importantly, circ_0000495 aggravated ischemic brain injury in vivo via activating TLR4/nuclear factor-κB (NF-κB) pathway. Collectively, OGD-treated HBMVECs-Exos transmitted circ_0000495 to regulate miR-579-3p/TLR4/NF-κB axis in microglia, thereby facilitating microglial M1-polarization and endothelial cell damage.


Asunto(s)
Exosomas , MicroARNs , Accidente Cerebrovascular , Animales , Ratones , Humanos , Células Endoteliales , Microglía , Receptor Toll-Like 4/genética , FN-kappa B , Factor de Necrosis Tumoral alfa , Encéfalo , Hipoxia , Oxígeno , Citocinas , MicroARNs/genética
7.
J Proteome Res ; 23(4): 1232-1248, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38407963

RESUMEN

The aim of this study was to identify serum diagnostic biomarkers associated with the severity of obstructive sleep apnea (OSA) during pregnancy. Differentially expressed proteins (DEPs) were identified in the control (C), mild (O), and moderate (MO) OSA groups (n = 3 in each group). Bioinformatics analysis was conducted to identify the underlying functions, pathways, and networks of the proteins. Receiver operating characteristic curves were used to assess the diagnostic value of the identified DEPs. The enzyme-linked immunoassay was performed to detect serum levels of the complement C1r subcomponent (C1R) and alpha-2-macroglobulin (A2M) in 79 pregnant women with OSA (mild OSA [n = 32]; moderate OSA [n = 29], and severe OSA [n = 18]) and 65 healthy pregnant women without OSA. Pearson's correlation analysis was conducted to analyze the correlation between C1R and A2M levels and OSA clinicopathological factors. In total, 141 DEPs, 29 DEPs, and 103 DEPs were identified in the three groups (i.e., the mild OSA vs control group, the moderate OSA vs mild apnea group, and the moderate OSA vs control group, respectively). C1R and A2M were identified as continuously up-regulated proteins, and the levels of C1R and A2M were associated with OSA severity. C1R and A2M were found to be correlated with body mass index, systolic blood pressure, apnea-hypopnea index, oxygen desaturation index, time with saturation below 90%, and lowest SaO2. Adverse maternal and neonatal outcomes were observed in pregnant women with OSA. C1R and A2M have been identified as diagnostic biomarkers and are associated with the severity of OSA during pregnancy.


Asunto(s)
Mujeres Embarazadas , Apnea Obstructiva del Sueño , Femenino , Humanos , Recién Nacido , Embarazo , alfa-Macroglobulinas , Biomarcadores , Complemento C1r/metabolismo , Polisomnografía , Proteoma , Apnea Obstructiva del Sueño/diagnóstico , Apnea Obstructiva del Sueño/complicaciones , Factores de Transcripción
8.
J Cell Mol Med ; 28(14): e18556, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39039706

RESUMEN

Oral lichen planus (OLP) is a particularly prevalent oral disorder with the potential to progress to oral squamous cell carcinoma (OSCC). SRY-box transcription factor 11 (Sox11) has been reported to serve as a prognostic marker for various cancers. However, the role and mechanism of Sox11 in OLP-related OSCC are unknown. Our results indicated that Sox11 was highly expressed, and that Sox11 promoter methylation was significantly reduced in OLP-associated OSCC tissues. High Sox11 expression and Sox11 promoter hypomethylation indicate a poor patient prognosis. According to in vivo and in vitro experiments, the knockdown of Sox11 inhibited proliferation, invasion, and migration while driving its apoptotic death in OSSC cells; Sox11 overexpression exerted the opposite effect as Sox11 knockdown. Mechanistically, knockdown of Sox11 inhibited PI3K/AKT and glycolysis pathway, and overexpression of Sox11 enhanced the PI3K/AKT and glycolysis pathways in OSCC cells. In addition, we demonstrated that Sox11 overexpression accelerated the progression of OSCC, at least in part by promoting PI3K/AKT pathway activation. In conclusion, our data indicated that the DNA hypomethylation-associated upregulation of Sox11 could promote oncogenic transformation via the PI3K/AKT pathway in OLP-associated OSCC. Therefore, Sox11 might be a reliable biomarker for predicting the progression of precancerous oral tissues.


Asunto(s)
Carcinogénesis , Proliferación Celular , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Boca , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Factores de Transcripción SOXC , Humanos , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción SOXC/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Carcinogénesis/genética , Carcinogénesis/patología , Carcinogénesis/metabolismo , Transducción de Señal , Masculino , Femenino , Animales , Regulación hacia Arriba/genética , Regiones Promotoras Genéticas , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Movimiento Celular/genética , Persona de Mediana Edad , Ratones , Pronóstico , Apoptosis/genética
9.
J Cell Mol Med ; 28(9): e18377, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38686488

RESUMEN

There are few effective therapeutic strategies for temporomandibular joint osteoarthritis (TMJOA) due to the unclear pathology and mechanisms. We aimed to confirm the roles of GPX4 and ferroptosis in TMJOA progression. ELISA assay was hired to evaluate concentrations of ferroptosis-related markers. The qRT-PCR assay was hired to assess gene mRNA level. Western blot assay and immunohistochemistry were hired to verify the protein level. CCK-8 assay was hired to detect cell viability. Human fibroblast-like synoviocytes (FLSs) were cultured to confirm the effects of GPX4 and indicated inhibitors, and further verified the effects of GPX4 and ferroptosis inhibitors in TMJOA model rats. Markers of ferroptosis including 8-hidroxy-2-deoxyguanosine (8-OHdG) and iron were notably increased in TMJOA tissues and primary OA-FLSs. However, the activity of the antioxidant system including the glutathione peroxidase activity, glutathione (GSH) contents, and glutathione/oxidized glutathione (GSH/GSSG) ratio was notably inhibited in TMJOA tissues, and the primary OA-FLSs. Furthermore, the glutathione peroxidase 4 (GPX4) expression was down-regulated in TMJOA tissues and primary OA-FLSs. Animal and cell experiments have shown that ferroptosis inhibitors notably inhibited ferroptosis and promoted HLS survival as well as up-regulated GPX4 expression. Also, GPX4 knockdown promoted ferroptosis and GPX4 overexpression inhibited ferroptosis. GPX4 also positively regulated cell survival which was the opposite with ferroptosis. In conclusion, GPX4 and ferroptosis regulated the progression of TMJOA. Targeting ferroptosis might be an effective therapeutic strategy for TMJOA patients in the clinic.


Asunto(s)
Ferroptosis , Osteoartritis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Articulación Temporomandibular , Animales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ratas , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ferroptosis/genética , Ferroptosis/efectos de los fármacos , Fibroblastos/metabolismo , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Ratas Sprague-Dawley , Sinoviocitos/metabolismo , Sinoviocitos/patología , Articulación Temporomandibular/patología , Articulación Temporomandibular/metabolismo
10.
J Cell Physiol ; 239(8): e31298, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38764331

RESUMEN

Early-onset preeclampsia, which occurrs before 34 weeks of gestation, is the most dangerous classification of preeclampsia, which is a pregnancy-specific disease that causes 1% of maternal deaths. G protein-coupled receptor 124 (GPR124) is significantly expressed at various stages of the human reproductive process, particularly during embryogenesis and angiogenesis. Our prior investigation demonstrated a notable decrease in GPR124 expression in the placentas of patients with early-onset preeclampsia compared to that in normal pregnancy placentas. However, there is a lack of extensive investigation into the molecular processes that contribute to the role of GPR124 in placenta development. This study aimed to examine the mechanisms by which GPR124 affects the occurrence of early-onset preeclampsia and its function in trophoblast. Proliferative, invasive, migratory, apoptotic, and inflammatory processes were identified in GPR124 knockdown, GPR124 overexpression, and normal HTR8/SVneo cells. The mechanism of GPR124-mediated cell function in GPR124 knockdown HTR8/SVneo cells was examined using inhibitors of the JNK or P38 MAPK pathway. Downregulation of GPR124 was found to significantly inhibit proliferation, invasion and migration, and promote apoptosis of HTR8/SVneo cells when compared to the control and GPR124 overexpression groups. This observation is consistent with the pathological characteristics of preeclampsia. In addition, GPR124 overexpression inhibits the secretion of pro-inflammatory cytokines interleukin (IL)-8 and interferon-γ (IFN-γ) while enhancing the secretion of the anti-inflammatory cytokine interleukin (IL)-4. Furthermore, GPR124 suppresses the activation of P-JNK and P-P38 within the JNK/P38 MAPK pathway. The invasion, apoptosis, and inflammation mediated by GPR124 were partially restored by suppressing the JNK and P38 MAPK pathways in HTR8/SVneo cells. GPR124 plays a crucial role in regulating trophoblast proliferation, invasion, migration, apoptosis, and inflammation via the JNK and P38 MAPK pathways. Furthermore, the effect of GPR124 on trophoblast suggests its involvement in the pathogenesis of early-onset preeclampsia.


Asunto(s)
Apoptosis , Movimiento Celular , Proliferación Celular , Inflamación , Preeclampsia , Receptores Acoplados a Proteínas G , Trofoblastos , Proteínas Quinasas p38 Activadas por Mitógenos , Humanos , Trofoblastos/metabolismo , Trofoblastos/patología , Apoptosis/genética , Proliferación Celular/genética , Femenino , Movimiento Celular/genética , Embarazo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Preeclampsia/patología , Preeclampsia/genética , Preeclampsia/metabolismo , Inflamación/patología , Inflamación/genética , Inflamación/metabolismo , Sistema de Señalización de MAP Quinasas , Línea Celular , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Placenta/metabolismo , Placenta/patología , Receptores de Estrógenos
11.
J Cell Physiol ; 239(6): e31267, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38558303

RESUMEN

Cervical cancer (CxCa) is the fourth most frequent cancer in women. This study aimed to determine the role and underlying mechanism of fibronectin type III domain-containing protein 5 (FNDC5) in inhibiting CxCa growth. Experiments were performed in human CxCa tissues, human CxCa cell lines (HeLa and SiHa), and xenograft mouse model established by subcutaneous injection of SiHa cells in nude mice. Bioinformatics analysis showed that CxCa patients with high FNDC5 levels have a longer overall survival period. FNDC5 expression was increased in human CxCa tissues, HeLa and SiHa cells. FNDC5 overexpression or FNDC5 protein not only inhibited proliferation, but also restrained invasion and migration of HeLa and SiHa cells. The effects of FNDC5 were prevented by inhibiting integrin with cilengitide, activating PI3K with recilisib or activating Akt with SC79. FNDC5 inhibited the phosphorylation of PI3K and Akt, which was attenuated by recilisib. PI3K inhibitor LY294002 showed similar effects to FNDC5 in HeLa and SiHa cells. Intravenous injection of FNDC5 (20 µg/day) for 14 days inhibited the tumor growth, and reduced the proliferation marker Ki67 expression and the Akt phosphorylation in the CxCa xenograft mouse model. These results indicate that FNDC5 inhibits the malignant phenotype of CxCa cells through restraining PI3K/Akt signaling. Upregulation of FNDC5 may play a beneficial role in retarding the tumor growth of CxCa.


Asunto(s)
Proliferación Celular , Fibronectinas , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Neoplasias del Cuello Uterino , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Fibronectinas/metabolismo , Fibronectinas/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HeLa , Ratones Endogámicos BALB C , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto , Integrinas/metabolismo , Progresión de la Enfermedad
12.
Clin Infect Dis ; 78(6): 1522-1530, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38530249

RESUMEN

BACKGROUND: Asymptomatic SARS-CoV-2 infection in children is highly prevalent but its acute and chronic implications have been minimally described. METHODS: In this controlled case-ascertained household transmission study, we recruited asymptomatic children <18 years with SARS-CoV-2 nucleic acid testing performed at 12 tertiary care pediatric institutions in Canada and the United States. We attempted to recruit all test-positive children and 1 to 3 test-negative, site-matched controls. After 14 days' follow-up we assessed the clinical (ie, symptomatic) and combined (ie, test-positive, or symptomatic) secondary attack rates (SARs) among household contacts. Additionally, post-COVID-19 condition (PCC) was assessed in SARS-CoV-2-positive participating children after 90 days' follow-up. RESULTS: A total of 111 test-positive and 256 SARS-CoV-2 test-negative asymptomatic children were enrolled between January 2021 and April 2022. After 14 days, excluding households with co-primary cases, the clinical SAR among household contacts of SARS-CoV-2-positive and -negative index children was 10.6% (19/179; 95% CI: 6.5%-16.1%) and 2.0% (13/663; 95% CI: 1.0%-3.3%), respectively (relative risk = 5.4; 95% CI: 2.7-10.7). In households with a SARS-CoV-2-positive index child, age <5 years, being pre-symptomatic (ie, developed symptoms after test), and testing positive during Omicron and Delta circulation periods (vs earlier) were associated with increased clinical and combined SARs among household contacts. Among 77 asymptomatic SARS-CoV-2-infected children with 90-day follow-up, 6 (7.8%; 95% CI: 2.9%-16.2%) reported PCC. CONCLUSIONS: Asymptomatic SARS-CoV-2-infected children, especially those <5 years, are important contributors to household transmission, with 1 in 10 exposed household contacts developing symptomatic illness within 14 days. Asymptomatic SARS-CoV-2-infected children may develop PCC.


Asunto(s)
Infecciones Asintomáticas , COVID-19 , Composición Familiar , SARS-CoV-2 , Humanos , COVID-19/transmisión , COVID-19/diagnóstico , COVID-19/epidemiología , Niño , Estudios Prospectivos , Masculino , Femenino , Canadá/epidemiología , Preescolar , SARS-CoV-2/aislamiento & purificación , Infecciones Asintomáticas/epidemiología , Estados Unidos/epidemiología , Lactante , Adolescente , Estudios de Casos y Controles
13.
J Am Chem Soc ; 146(8): 5643-5649, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38327018

RESUMEN

We developed a method for the enantioselective synthesis of germanium-stereogenic compounds by the desymmetric carbene insertion of dihydrogermanes. A chiral rhodium phosphate catalyst decomposes diaryldiazo-methanes to generate rhodium carbenes that insert enantioselectively into one of the two Ge-H bonds of dihydrogermanes to form germanium-stereogenic compounds under mild reaction conditions. By this method, a variety of chiral germanes with germanium-stereogenic centers were synthesized in high yields and excellent enantioselectivities. Kinetic studies of the reaction showed that the diazo decomposition process was the rate-determining step. The remaining Ge-H bond of the chiral germane products provides a possibility for preparing chiral tetra-substituted germanium-stereogenic compounds.

14.
J Am Chem Soc ; 146(25): 17377-17383, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38871485

RESUMEN

A prominent feature of modern electrochemical technologies, such as fuel cells and electrolysis, is the employing of polyelectrolytes instead of liquid electrolytes. Unlike the well-studied electrode/liquid electrolyte interfaces, however, the catalytic characteristics of electrode/polyelectrolyte interfaces remain largely unexplored, mostly due to the lack of reliable probing methods. Herein, we report a universally applicable approach to investigating electrocatalytic reactions at electrode/polyelectrolyte interfaces under normal electrochemical conditions. By coating a thin layer of anion-exchange membrane (AEM) onto the electrode surface, solutions with bulky organic cations were well separated, thus a pure electrode/polyelectrolyte interface can be established in a regular electrochemical setup and studied using in situ spectroscopies, e.g., attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS). We found that the blank Au surface was inert toward the CO2 reduction reaction (CO2RR) in the absence of alkali metal cations, whereas coating with an AEM can dramatically turn on the catalytic activity. ATR-SEIRAS revealed that the hydrogen bond network of water at the Au/AEM interface was enhanced in comparison to that on the blank Au surface, which facilitated the hydrogenation process of the CO2RR. These findings further our fundamental understanding of the catalytic behavior of electrode/polyelectrolyte interfaces and benefit the development of relevant electrochemical technologies.

15.
J Am Chem Soc ; 146(5): 3458-3470, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38270100

RESUMEN

Ligand modulation of transition-metal catalysts to achieve optimal reactivity and selectivity in alkene hydrofunctionalization is a fundamental challenge in synthetic organic chemistry. Hydroaminoalkylation, an atom-economical approach for alkylating amines using alkenes, is particularly significant for amine synthesis in the pharmaceutical, agrochemical, and fine chemical industries. However, the existing methods usually require specific substrate combinations to achieve precise regio- and stereoselectivity, which limits their practical utility. Protocols allowing for regiodivergent hydroaminoalkylation from the same starting materials, controlling both regiochemical and stereochemical outcomes, are currently absent. Herein, we report a ligand-controlled, regiodivergent nickel-catalyzed hydroaminoalkylation of unactivated alkenes with N-sulfonyl amines. The reaction initiates with amine dehydrogenation and involves aza-nickelacycle intermediates. Tritert-butylphosphine promotes branched regioselectivity and syn diastereoselectivity, whereas ethyldiphenylphosphine enables linear selectivity, yielding regioisomers with inverse orientation. Systematic evaluation of diverse monodentate phosphine ligands reveals distinct regioselectivity cliffs, and % Vbur (min), a ligand steric descriptor, was established as a predictive parameter correlating ligand structure to regioselectivity. Computational investigations supported experimental findings, offering mechanistic insights into the origins of regioselectivity. Our method provides an efficient and predictable route for amine synthesis, demonstrating broad substrate scope, excellent tolerance toward various functional groups, and practical advantages. These include the use of readily available starting materials and cost-effective nickel(II) salts as precatalysts.

16.
J Am Chem Soc ; 146(22): 14915-14921, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38781401

RESUMEN

Unactivated aliphatic alkenes are particularly desirable as starting materials because they are readily accessible in large quantities, but the enantioselective intermolecular reductive coupling of unactivated alkenes with imines is challenging. In this paper, we report a method for nickel-catalyzed intermolecular reductive coupling reactions between aliphatic alkenes and imines to yield chiral amines with excellent enantioselectivities and good linear selectivities. The reaction conditions are compatible with a broad range of aliphatic alkenes, including those derived from bioactive molecules. The success of this method can be attributed to the use of newly developed monodentate chiral spiro phosphine ligands.

17.
J Am Chem Soc ; 146(32): 22157-22165, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39102638

RESUMEN

Stereoconvergent reactions enable the transformation of mixed stereoisomers into well-defined, chiral products─a crucial strategy for handling Z/E-mixed olefins, which are common but challenging substrates in organic synthesis. Herein, we report a stereoconvergent and highly enantioselective method for synthesizing Z-homoallylic alcohols via the nickel-catalyzed reductive coupling of Z/E-mixed 1,3-dienes with aldehydes. This process is enabled by an N-heterocyclic carbene ligand characterized by C2-symmetric backbone chirality and bulky 2,6-diisopropyl N-aryl substituents. Our method achieves excellent stereocontrol over both enantioselectivity and Z-selectivity in a single step, producing chiral Z-homoallylic alcohols that are valuable in natural products and pharmaceuticals.

18.
Anal Chem ; 96(26): 10772-10779, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38902946

RESUMEN

A simple, sustainable, and sensitive monitoring approach of micro/nanoplastics (MNPs) in aqueous samples is crucial since it helps in assessing the extent of contamination and understanding the potential risks associated with their presence without causing additional stress to the environment. In this study, a novel strategy for qualitative and quantitative determination of MNPs in water by direct solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was proposed for the first time. Spherical poly(methyl methacrylate) (PMMA) and irregularly shaped polyvinyl dichloride (PVDC) were used to evaluate the feasibility and performance of the proposed method. The results demonstrated that both PMMA and PVDC MNPs were efficiently extracted by the homemade SPME coating of nitrogen-doped porous carbons (N-SPCs) and exhibited sufficient thermal decomposition in the GC-MS injection port. Excellent extraction performances of N-SPCs coating for MNPs are attributed to hydrophobic cross-linking, electrostatic forcing, hydrogen bonding, and pore trapping. Methyl methacrylate was identified as the marker for PMMA, while 1,3-dichlorobenzene and 1,3,5-trichlorobenzene were the indicators for PVDC. Under the optimal extraction and decomposition conditions, the proposed method exhibited ultrahigh sensitivity, with a limit of detection of 0.0041 µg/L for PMMA and 0.0054 µg/L for PVDC. Notably, a programmed temperature strategy for the GC-MS injector was developed to discriminate and eliminate the potential interferences of intrinsic indicator compounds. Owing to the integration of sampling, extraction, injection, and decomposition into one step by SPME, the proposed method demonstrates exceptional sensitivity, eliminating the necessity for complex sample pretreatment procedures and the use of organic solvents. Finally, the proposed method was successfully applied in the determination of PMMA and PVDC MNPs in real aqueous samples.

19.
Anal Chem ; 96(5): 2227-2235, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38272489

RESUMEN

Determinations of micro/nanoplastics (MNPs) in environmental samples are essential to assess the extent of their presence in the environment and their potential impact on ecosystems and human health. With the aim to provide a sensitive method with simplified pretreatment steps, cooling-assisted solid-phase microextraction (CA-SPME) coupled to gas chromatography-mass spectrometry (GC-MS) is proposed as a new approach to quantify mass concentrations of MNPs in water and soil samples. The herein proposed CA-SPME method offers the unique advantage of integrating the thermal decomposition of MNPs and enrichment of signature compounds into one step. Poly(methyl methacrylate) (PMMA) was used as a model substance to verify the method performance in this work. Theoretical insights demonstrated that pyrolysis is the rate-determining step during the extraction process and that PMMA is effectively decomposed at 350 °C with an estimated incubation time of 13 min. Eight compounds were identified in the pyrolysis products by CA-SPME-GC-MS with the use of a DVB/CAR/PDMS coating, wherein methyl methacrylate was considered as the best indicator and dimethyl 2-methylenesuccinate was selected as the confirmation compound. Under the optimized conditions, the proposed method exhibited wide linearity (0.5-2000 µg for water and 5-1000 µg for soil) and high sensitivity, with limits of detection of 0.014 and 0.28 µg for water and soil, respectively. Finally, the proposed method was successfully applied for determinations of PMMA MNPs in real water and soil samples with satisfactory recoveries attained. The method only required the employment of a filter membrane for water analysis, while soil samples were analyzed directly without any pretreatment. The solvent-free approach, straightforward operation, and high sensitivity of the proposed method show great potential for the analysis of MNPs in different environmental samples.

20.
Biochem Biophys Res Commun ; 735: 150451, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39094233

RESUMEN

Cerebral small vascular disease (CSVD) has a high incidence worldwide, but its pathological mechanisms remain poorly understood due to the lack of proper animal models. The current animal models of CSVD have several limitations such as high mortality rates and large-sized lesions, and thus it is urgent to develop new animal models of CSVD. Ultrasound can activate protoporphyrin to produce reactive oxygen species in a liquid environment. Here we delivered protoporphyrin into cerebral small vessels of rat brain through polystyrene microspheres with a diameter of 15 µm, and then performed transcranial ultrasound stimulation (TUS) on the model rats. We found that TUS did not affect the large vessels or cause large infarctions in the brain of model rats. The mortality rates were also comparable between the sham and model rats. Strikingly, TUS induced several CSVD-like phenotypes such as cerebral microinfarction, white matter injuries and impaired integrity of endothelial cells in the model rats. Additionally, these effects could be alleviated by antioxidant treatment with N-acetylcysteine (NAC). As control experiments, TUS did not lead to cerebral microinfarction in the rat brain when injected with the polystyrene microspheres not conjugated with protoporphyrin. In sum, we generated a rat model of CSVD that may be useful for the mechanistic study and drug development for CSVD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA